Analog circuit fault diagnosis based UCISVM

断层(地质) 模拟电子学 故障检测与隔离 电子线路 故障覆盖率 陷入故障 人工神经网络 算法
作者
Aihua Zhang,Chen Chen,Baoshan Jiang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:173: 1752-1760 被引量:18
标识
DOI:10.1016/j.neucom.2015.09.050
摘要

Focusing on the issue of analog circuit performance online evaluation, the arithmetic speed and the evaluation reliability should be considered. Moreover, the data collected from industrial field has a lots of undesirable features, such as nonlinear feature, time varying feature and contained faults value. All of them should be taken into account. Therefore, two online evaluation strategies are proposed for an analog circuit performance evaluation. First, an analog circuit performance evaluation strategy based on improved support vector machine (ISVM) is presented for the purpose of deducing the training data number largely. This method can deduce the data training set largely as little as 10% of the initial training set and tackle the computational complexity. However, the ISVM is established on the basis of random selection of training set, and this blindness of data training set random selection would bring great impact on the performance of evaluation accuracy. Based on this, another analog circuit fault diagnosis strategy based on unsupervised clustering ISVM (UCISVM) is proposed. This method not only maintains the merit of small data set, but also overcomes the defect of training set selection randomly. The strong characteristic of the support vectors are the only concerns during the diagnosis processes. Corresponding, the unknown fault diagnosis also can be recognized via the UCISVM. The experiment takes a typical analog circuit as diagnosis object. In order to prove the effectiveness of the proposed two methods in this paper, the traditional fault diagnosis method based on standard support vector machine (SVM) is employed also. The diagnosis speed and accuracy are all proved via numerical simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
难过安白发布了新的文献求助10
刚刚
李健的小迷弟应助Annlucy采纳,获得10
刚刚
枣树先生发布了新的文献求助10
1秒前
结实的问寒完成签到,获得积分20
2秒前
笑点低黄豆完成签到,获得积分10
4秒前
4秒前
206拧绳哥完成签到,获得积分10
5秒前
bird完成签到 ,获得积分10
5秒前
大模型应助haujiun采纳,获得10
6秒前
乐乐应助阳光采纳,获得10
6秒前
zeng完成签到,获得积分20
8秒前
8秒前
小蘑菇应助Whiaper采纳,获得10
8秒前
wanci应助科研小白采纳,获得10
9秒前
10秒前
姜姜发布了新的文献求助10
14秒前
15秒前
206拧绳哥发布了新的文献求助10
15秒前
Ddz完成签到,获得积分10
16秒前
科研通AI5应助邪恶小天使采纳,获得10
16秒前
17秒前
科研通AI5应助陈nn采纳,获得10
17秒前
18秒前
18秒前
满穗完成签到,获得积分20
19秒前
19秒前
希望天下0贩的0应助姜姜采纳,获得10
21秒前
jennifercui完成签到,获得积分20
21秒前
Morch2021发布了新的文献求助10
21秒前
21秒前
小邓完成签到,获得积分10
22秒前
22秒前
高贵的花卷完成签到,获得积分10
22秒前
23秒前
法医小王子完成签到,获得积分20
23秒前
量子星尘发布了新的文献求助50
24秒前
小杨完成签到,获得积分20
24秒前
搜集达人应助Hou采纳,获得10
25秒前
张匀继发布了新的文献求助10
25秒前
jennifercui发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886200
求助须知:如何正确求助?哪些是违规求助? 4171169
关于积分的说明 12943805
捐赠科研通 3931690
什么是DOI,文献DOI怎么找? 2157185
邀请新用户注册赠送积分活动 1175580
关于科研通互助平台的介绍 1080137