Analog circuit fault diagnosis based UCISVM

断层(地质) 模拟电子学 故障检测与隔离 电子线路 故障覆盖率 陷入故障 人工神经网络 算法
作者
Aihua Zhang,Chen Chen,Baoshan Jiang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:173: 1752-1760 被引量:18
标识
DOI:10.1016/j.neucom.2015.09.050
摘要

Focusing on the issue of analog circuit performance online evaluation, the arithmetic speed and the evaluation reliability should be considered. Moreover, the data collected from industrial field has a lots of undesirable features, such as nonlinear feature, time varying feature and contained faults value. All of them should be taken into account. Therefore, two online evaluation strategies are proposed for an analog circuit performance evaluation. First, an analog circuit performance evaluation strategy based on improved support vector machine (ISVM) is presented for the purpose of deducing the training data number largely. This method can deduce the data training set largely as little as 10% of the initial training set and tackle the computational complexity. However, the ISVM is established on the basis of random selection of training set, and this blindness of data training set random selection would bring great impact on the performance of evaluation accuracy. Based on this, another analog circuit fault diagnosis strategy based on unsupervised clustering ISVM (UCISVM) is proposed. This method not only maintains the merit of small data set, but also overcomes the defect of training set selection randomly. The strong characteristic of the support vectors are the only concerns during the diagnosis processes. Corresponding, the unknown fault diagnosis also can be recognized via the UCISVM. The experiment takes a typical analog circuit as diagnosis object. In order to prove the effectiveness of the proposed two methods in this paper, the traditional fault diagnosis method based on standard support vector machine (SVM) is employed also. The diagnosis speed and accuracy are all proved via numerical simulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zoey发布了新的文献求助20
1秒前
赘婿应助wuxidixi采纳,获得10
1秒前
5秒前
7秒前
隐形曼青应助SCI不嫌多采纳,获得30
7秒前
清新的橘子完成签到,获得积分10
8秒前
8秒前
11号楼203完成签到,获得积分10
9秒前
9秒前
乐观小之应助Olivia采纳,获得10
9秒前
kiuikiu完成签到,获得积分20
10秒前
笨笨小刺猬完成签到,获得积分10
11秒前
宝贝完成签到,获得积分10
11秒前
zzn发布了新的文献求助10
12秒前
12秒前
13秒前
张杨林发布了新的文献求助30
13秒前
大胆的惜珊完成签到,获得积分10
14秒前
wuxidixi发布了新的文献求助10
15秒前
单纯行天完成签到,获得积分10
16秒前
田様应助一只鸽子采纳,获得50
16秒前
粽子完成签到,获得积分10
16秒前
Dream发布了新的文献求助10
17秒前
莉莉斯完成签到 ,获得积分10
19秒前
zzn完成签到,获得积分10
19秒前
20秒前
香蕉觅云应助沐子笑采纳,获得10
20秒前
111完成签到,获得积分10
21秒前
明朗完成签到 ,获得积分10
24秒前
袄猴发布了新的文献求助10
26秒前
所所应助七七七采纳,获得10
26秒前
26秒前
羁绊完成签到,获得积分10
26秒前
邾佳完成签到 ,获得积分10
27秒前
28秒前
科研通AI5应助Olivia采纳,获得10
28秒前
小二郎应助科研通管家采纳,获得10
30秒前
ding应助科研通管家采纳,获得10
30秒前
Halo完成签到,获得积分10
31秒前
张杨林完成签到,获得积分10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225