Three‐dimensional reconstruction of underwater objects using wide‐aperture imaging SONAR

声纳 水下 合成孔径声纳 计算机科学 计算机视觉 人工智能 散斑噪声 光圈(计算机存储器) 反褶积 迭代重建 地质学 声学 斑点图案 算法 海洋学 物理
作者
Thomas Guerneve,Kartic Subr,Yvan Pétillot
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:35 (6): 890-905 被引量:69
标识
DOI:10.1002/rob.21783
摘要

Abstract The estimation of the geometric structure of objects located underwater underpins a plethora of applications such as mapping shipwrecks for archaeology, monitoring the health of coral reefs, detecting faults in offshore oil rigs and pipelines, detection and identification of potential threats on the seabed, etc. Acoustic imaging is the most popular choice for underwater sensing. Underwater exploratory vehicles typically employ wide‐aperture Sound Navigation and Ranging (SONAR) imaging sensors. Although their wide aperture enables scouring large volumes of water ahead of them for obstacles, the resulting images produced are blurry due to integration over the aperture. Performing three‐dimensional (3D) reconstruction from this blurry data is notoriously difficult. This challenging inverse problem is further exacerbated by the presence of speckle noise and reverberations. The state‐of‐the‐art methods in 3D reconstruction from sonar either require bulky and expensive matrix‐arrays of sonar sensors or additional narrow‐aperture sensors. Due to its low footprint, the latter induces gaps between reconstructed scans. Avoiding such gaps requires slow and cumbersome scanning by the vehicles that carry the scanners. In this paper, we present two reconstruction methods enabling on‐site 3D reconstruction from imaging sonars of any aperture. The first of these presents an elegant linear formulation of the problem, as a blind deconvolution with a spatially varying kernel. The second method is a simple algorithmic approach for approximate reconstruction, using a nonlinear formulation. We demonstrate that our simple approximation algorithms perform 3D reconstruction directly from the data recorded by wide‐aperture systems, thus eliminating the need for multiple sensors to be mounted on underwater vehicles for this purpose. Additionally, we observe that the wide aperture may be exploited to improve the coverage of the reconstructed samples (on the scanned object's surface). We demonstrate the efficacy of our algorithms on simulated as well as real data acquired using two sensors, and we compare our work to the state of the art in sonar reconstruction. Finally, we show the employability of our reconstruction methods on field data gathered by an autonomous underwater vehicle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蓝灵发布了新的文献求助100
1秒前
1秒前
3秒前
横陈发布了新的文献求助30
5秒前
6秒前
curtisness应助一朵采纳,获得10
6秒前
CCC完成签到,获得积分10
6秒前
缥缈发布了新的文献求助10
7秒前
7秒前
成就迎梅发布了新的文献求助10
9秒前
菜菜爱吃花完成签到 ,获得积分10
9秒前
CCC发布了新的文献求助10
10秒前
11秒前
外向不愁完成签到,获得积分20
14秒前
蓝灵完成签到,获得积分10
14秒前
快乐紫青完成签到 ,获得积分10
15秒前
the8完成签到,获得积分10
15秒前
17秒前
顾矜应助外向不愁采纳,获得10
18秒前
19秒前
缥缈完成签到,获得积分10
19秒前
22秒前
帕金森完成签到,获得积分10
22秒前
22秒前
笑傲江湖发布了新的文献求助10
23秒前
25秒前
鲁鲁完成签到,获得积分10
26秒前
mhy完成签到,获得积分10
27秒前
HD发布了新的文献求助10
27秒前
彩色代柔完成签到,获得积分10
27秒前
qyy发布了新的文献求助10
28秒前
myg8627完成签到,获得积分10
29秒前
CipherSage应助LLLLLL采纳,获得10
29秒前
myg8627发布了新的文献求助10
32秒前
33秒前
科研通AI5应助落雨采纳,获得10
35秒前
36秒前
37秒前
CC发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4812366
求助须知:如何正确求助?哪些是违规求助? 4125096
关于积分的说明 12764283
捐赠科研通 3862042
什么是DOI,文献DOI怎么找? 2125718
邀请新用户注册赠送积分活动 1147312
关于科研通互助平台的介绍 1041072