原子层沉积
阳极
电解质
材料科学
锂(药物)
金属
图层(电子)
电池(电)
沉积(地质)
化学工程
纳米技术
无机化学
金属锂
电极
化学
冶金
古生物学
功率(物理)
物理化学
内分泌学
工程类
物理
生物
医学
量子力学
沉积物
作者
Alexander C. Kozen,Chuan‐Fu Lin,Alexander J Pearse,Marshall A. Schroeder,Xiaogang Han,Liangbing Hu,Sang Bok Lee,Gary W. Rubloff,Malachi Noked
出处
期刊:ACS Nano
[American Chemical Society]
日期:2015-05-13
卷期号:9 (6): 5884-5892
被引量:785
标识
DOI:10.1021/acsnano.5b02166
摘要
Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g(-1). However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI