西沙必利
CYP3A4型
微粒体
药理学
CYP3A型
化学
细胞色素P450
药物相互作用
酮康唑
新陈代谢
非特异性单加氧酶
代谢物
内分泌学
药代动力学
酶
生物化学
CYP1A2
生物
微生物学
抗真菌
作者
Zeruesenay Desta,Nadia Soukhova,Subena K. Mahal,David A. Flockhart
标识
DOI:10.1016/s0090-9556(24)15349-4
摘要
Using human liver microsomes (HLMs) and recombinant cytochrome P450s (CYP450s), we characterized the CYP450 isoforms involved in the primary metabolic pathways of cisapride and documented the ability of cisapride to inhibit the CYP450 system. In HLMs, cisapride was N-dealkylated to norcisapride (NORCIS) and hydroxylated to 3-fluoro-4-hydroxycisapride (3-F-4-OHCIS) and to 4-fluoro-2-hydroxycisapride (4-F-2-OHCIS). Formation of NORCIS, 3-F-4-OHCIS, and 4-F-2-OHCIS in HLMs exhibited Michaelis-Menten kinetics (K(m): 23.4 +/- 8.6, 32 +/- 11, and 31 +/- 23 microM; V(max): 155 +/- 91, 52 +/- 23, and 31 +/- 23 pmol/min/mg of protein, respectively). The average in vitro intrinsic clearance (V(max)/K(m)) revealed that the formation of NORCIS was 3.9- to 5. 9-fold higher than that of the two hydroxylated metabolites. Formation rate of NORCIS from 10 microM cisapride in 14 HLMs was highly variable (range, 4.9-133.6 pmol/min/mg of protein) and significantly correlated with the activities of CYP3A (r = 0.86, P =. 0001), CYP2C19, and 1A2. Of isoform-specific inhibitors, 1 microM ketoconazole and 50 microM troleandomycin were potent inhibitors of NORCIS formation from 10 microM cisapride (by 51 +/- 9 and 44 +/- 17%, respectively), whereas the effect of other inhibitors was minimal. Of 10 recombinant human CYP450s tested, CYP3A4 formed NORCIS from 10 microM cisapride at the highest rate (V = 0.56 +/- 0. 13 pmol/min/pmol of P450) followed by CYP2C8 (V = 0.29 +/- 0.08 pmol/min/pmol of P450) and CYP2B6 (0.15 +/- 0.04 pmol/min/pmol of P450). The formation of 3-F-4-OHCIS was mainly catalyzed by CYP2C8 (V = 0.71 +/- 0.24 pmol/min/pmol of P450) and that of 4-F-2-OHCIS by CYP3A4 (0.16 +/- 0.03 pmol/min/pmol of P450). Clearly, recombinant CYP2C8 participates in cisapride metabolism, but when the in vitro intrinsic clearances obtained were corrected for abundance of each CYP450 in the liver, CYP3A4 is the dominant isoform. Cisapride was a relatively potent inhibitor of CYP2D6, with no significant effect on other isoforms tested, but the K(i) value derived (14 +/- 16 microM) was much higher than the clinically expected concentration of cisapride (<1 microM). Our data suggest that CYP3A is the main isoform involved in the overall metabolic clearance of cisapride. Cisapride metabolism is likely to be subject to interindividual variability in CYP3A expression and to drug interactions involving this isoform.
科研通智能强力驱动
Strongly Powered by AbleSci AI