Predicting Treatment Response to Cognitive Behavioral Therapy in Panic Disorder With Agoraphobia by Integrating Local Neural Information

广场恐怖症 惊恐障碍 心理学 认知行为疗法 认知 意识的神经相关物 神经影像学 神经科学 临床心理学 医学 心理治疗师 精神科 焦虑
作者
Tim Hahn,Tilo Kircher,Benjamin Straube,Hans‐Ulrich Wïttchen,Carsten Konrad,Andreas Ströhle,André Wittmann,Bettina Pfleiderer,Andreas Reif,Volker Arolt,Ulrike Lueken
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:72 (1): 68-68 被引量:127
标识
DOI:10.1001/jamapsychiatry.2014.1741
摘要

Although neuroimaging research has made substantial progress in identifying the large-scale neural substrate of anxiety disorders, its value for clinical application lags behind expectations. Machine-learning approaches have predictive potential for individual-patient prognostic purposes and might thus aid translational efforts in psychiatric research.To predict treatment response to cognitive behavioral therapy (CBT) on an individual-patient level based on functional magnetic resonance imaging data in patients with panic disorder with agoraphobia (PD/AG).We included 49 patients free of medication for at least 4 weeks and with a primary diagnosis of PD/AG in a longitudinal study performed at 8 clinical research institutes and outpatient centers across Germany. The functional magnetic resonance imaging study was conducted between July 2007 and March 2010.Twelve CBT sessions conducted 2 times a week focusing on behavioral exposure.Treatment response was defined as exceeding a 50% reduction in Hamilton Anxiety Rating Scale scores. Blood oxygenation level-dependent signal was measured during a differential fear-conditioning task. Regional and whole-brain gaussian process classifiers using a nested leave-one-out cross-validation were used to predict the treatment response from data acquired before CBT.Although no single brain region was predictive of treatment response, integrating regional classifiers based on data from the acquisition and the extinction phases of the fear-conditioning task for the whole brain yielded good predictive performance (accuracy, 82%; sensitivity, 92%; specificity, 72%; P < .001). Data from the acquisition phase enabled 73% correct individual-patient classifications (sensitivity, 80%; specificity, 67%; P < .001), whereas data from the extinction phase led to an accuracy of 74% (sensitivity, 64%; specificity, 83%; P < .001). Conservative reanalyses under consideration of potential confounders yielded nominally lower but comparable accuracy rates (acquisition phase, 70%; extinction phase, 71%; combined, 79%).Predicting treatment response to CBT based on functional neuroimaging data in PD/AG is possible with high accuracy on an individual-patient level. This novel machine-learning approach brings personalized medicine within reach, directly supporting clinical decisions for the selection of treatment options, thus helping to improve response rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碧蓝的大雁完成签到 ,获得积分10
1秒前
1秒前
漫溢阳光完成签到 ,获得积分0
1秒前
Eton发布了新的文献求助30
1秒前
1秒前
CYS关注了科研通微信公众号
1秒前
桐桐应助西番雅采纳,获得10
1秒前
hj完成签到,获得积分10
2秒前
kosmos完成签到,获得积分10
2秒前
LYY发布了新的文献求助10
2秒前
哈哈哈发布了新的文献求助10
3秒前
3秒前
无花果应助研友_nvggxZ采纳,获得10
3秒前
茜茜完成签到,获得积分10
3秒前
MrTStar完成签到 ,获得积分10
4秒前
不想看文献完成签到 ,获得积分10
4秒前
灵巧的熊猫完成签到,获得积分10
4秒前
万能图书馆应助斯利美尔采纳,获得10
4秒前
4秒前
5秒前
嘻嘻完成签到,获得积分10
5秒前
6秒前
Myu111111完成签到,获得积分10
7秒前
义气鲂发布了新的文献求助10
7秒前
7秒前
乐乐应助人生如梦采纳,获得10
8秒前
8秒前
扣子完成签到,获得积分10
8秒前
好困发布了新的文献求助10
8秒前
SciGPT应助唐展通采纳,获得10
9秒前
9秒前
赫天磊给赫天磊的求助进行了留言
9秒前
9秒前
wu完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
10秒前
小如发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5068161
求助须知:如何正确求助?哪些是违规求助? 4289857
关于积分的说明 13365461
捐赠科研通 4109571
什么是DOI,文献DOI怎么找? 2250420
邀请新用户注册赠送积分活动 1255787
关于科研通互助平台的介绍 1188288