Predicting Treatment Response to Cognitive Behavioral Therapy in Panic Disorder With Agoraphobia by Integrating Local Neural Information

广场恐怖症 惊恐障碍 心理学 认知行为疗法 认知 意识的神经相关物 神经影像学 神经科学 临床心理学 医学 心理治疗师 精神科 焦虑
作者
Tim Hahn,Tilo Kircher,Benjamin Straube,Hans‐Ulrich Wïttchen,Carsten Konrad,Andreas Ströhle,André Wittmann,Bettina Pfleiderer,Andreas Reif,Volker Arolt,Ulrike Lueken
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:72 (1): 68-68 被引量:127
标识
DOI:10.1001/jamapsychiatry.2014.1741
摘要

Although neuroimaging research has made substantial progress in identifying the large-scale neural substrate of anxiety disorders, its value for clinical application lags behind expectations. Machine-learning approaches have predictive potential for individual-patient prognostic purposes and might thus aid translational efforts in psychiatric research.To predict treatment response to cognitive behavioral therapy (CBT) on an individual-patient level based on functional magnetic resonance imaging data in patients with panic disorder with agoraphobia (PD/AG).We included 49 patients free of medication for at least 4 weeks and with a primary diagnosis of PD/AG in a longitudinal study performed at 8 clinical research institutes and outpatient centers across Germany. The functional magnetic resonance imaging study was conducted between July 2007 and March 2010.Twelve CBT sessions conducted 2 times a week focusing on behavioral exposure.Treatment response was defined as exceeding a 50% reduction in Hamilton Anxiety Rating Scale scores. Blood oxygenation level-dependent signal was measured during a differential fear-conditioning task. Regional and whole-brain gaussian process classifiers using a nested leave-one-out cross-validation were used to predict the treatment response from data acquired before CBT.Although no single brain region was predictive of treatment response, integrating regional classifiers based on data from the acquisition and the extinction phases of the fear-conditioning task for the whole brain yielded good predictive performance (accuracy, 82%; sensitivity, 92%; specificity, 72%; P < .001). Data from the acquisition phase enabled 73% correct individual-patient classifications (sensitivity, 80%; specificity, 67%; P < .001), whereas data from the extinction phase led to an accuracy of 74% (sensitivity, 64%; specificity, 83%; P < .001). Conservative reanalyses under consideration of potential confounders yielded nominally lower but comparable accuracy rates (acquisition phase, 70%; extinction phase, 71%; combined, 79%).Predicting treatment response to CBT based on functional neuroimaging data in PD/AG is possible with high accuracy on an individual-patient level. This novel machine-learning approach brings personalized medicine within reach, directly supporting clinical decisions for the selection of treatment options, thus helping to improve response rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JC完成签到,获得积分10
1秒前
2秒前
2秒前
我是老大应助ccccctt采纳,获得10
2秒前
3秒前
sunny完成签到 ,获得积分10
3秒前
mujin发布了新的文献求助30
4秒前
今后应助Hibiscus95采纳,获得10
4秒前
爱吃鱼的猫完成签到,获得积分10
4秒前
Henwenwen6完成签到,获得积分10
4秒前
5秒前
朱元发完成签到,获得积分10
5秒前
5秒前
李爱国应助往海深处听采纳,获得10
6秒前
Jenny完成签到,获得积分10
7秒前
9秒前
9秒前
123ywh发布了新的文献求助10
10秒前
11秒前
丘比特应助唐阳采纳,获得10
14秒前
14秒前
wanci应助hipest采纳,获得10
14秒前
LZK完成签到,获得积分10
15秒前
达利园发布了新的文献求助10
15秒前
Yumii完成签到,获得积分10
15秒前
深情安青应助123ywh采纳,获得10
16秒前
Hibiscus95发布了新的文献求助10
16秒前
16秒前
17秒前
佼佼者发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
mujin完成签到,获得积分10
19秒前
19秒前
达利园完成签到,获得积分10
20秒前
盆盆完成签到,获得积分20
20秒前
21秒前
13934532358完成签到 ,获得积分10
22秒前
LZR发布了新的文献求助10
23秒前
Akim应助达利园采纳,获得10
23秒前
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5744422
求助须知:如何正确求助?哪些是违规求助? 5419658
关于积分的说明 15350028
捐赠科研通 4884719
什么是DOI,文献DOI怎么找? 2626068
邀请新用户注册赠送积分活动 1574878
关于科研通互助平台的介绍 1531720