Integration of Deep Learning Radiomics and Counts of Circulating Tumor Cells Improves Prediction of Outcomes of Early Stage NSCLC Patients Treated With Stereotactic Body Radiation Therapy

医学 无线电技术 阶段(地层学) 肿瘤科 内科学 放射科 生物 古生物学
作者
Zhicheng Jiao,Hongming Li,Ying Xiao,Jay F. Dorsey,Charles B. Simone,Steven J. Feigenberg,Gary D. Kao,Yong Fan
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:112 (4): 1045-1054 被引量:24
标识
DOI:10.1016/j.ijrobp.2021.11.006
摘要

We develop a deep learning (DL) radiomics model and integrate it with circulating tumor cell (CTC) counts as a clinically useful prognostic marker for predicting recurrence outcomes of early-stage (ES) non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiation therapy (SBRT).A cohort of 421 NSCLC patients was used to train a DL model for gleaning informative imaging features from computed tomography (CT) data. The learned imaging features were optimized on a cohort of 98 ES-NSCLC patients treated with SBRT for predicting individual patient recurrence risks by building DL models on CT data and clinical measures. These DL models were validated on the third cohort of 60 ES-NSCLC patients treated with SBRT to predict recurrent risks and stratify patients into subgroups with distinct outcomes in conjunction with CTC counts.The DL model obtained a concordance-index of 0.880 (95% confidence interval, 0.879-0.881). Patient subgroups with low and high DL risk scores had significantly different recurrence outcomes (P = 3.5e-04). The integration of DL risk scores and CTC measures identified 4 subgroups of patients with significantly different risks of recurrence (χ2 = 20.11, P = 1.6e-04). Patients with positive CTC measures were associated with increased risks of recurrence that were significantly different from patients with negative CTC measures (P = 0.0447).In this first-ever study integrating DL radiomics models and CTC counts, our results suggested that this integration improves patient stratification compared with either imagining data or CTC measures alone in predicting recurrence outcomes for patients treated with SBRT for ES-NSCLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陶醉薯片完成签到,获得积分10
1秒前
田様应助dzll采纳,获得10
1秒前
2秒前
颜沛文完成签到,获得积分10
5秒前
11发布了新的文献求助10
6秒前
6秒前
搞怪城完成签到,获得积分10
7秒前
zy发布了新的文献求助10
7秒前
7秒前
科研通AI5应助NXK采纳,获得10
8秒前
cmtang完成签到,获得积分10
9秒前
10秒前
Yi发布了新的文献求助10
12秒前
。。。完成签到,获得积分10
13秒前
dzll发布了新的文献求助10
15秒前
天天快乐应助shame采纳,获得10
21秒前
23秒前
大溺发布了新的文献求助10
23秒前
完美世界应助十一采纳,获得10
23秒前
英姑应助meimei采纳,获得10
24秒前
顾矜应助123采纳,获得10
25秒前
独特寒安发布了新的文献求助30
25秒前
orixero应助HCF采纳,获得10
27秒前
小橙子完成签到,获得积分10
28秒前
NXK发布了新的文献求助10
28秒前
Murphy完成签到 ,获得积分10
28秒前
31秒前
32秒前
34秒前
大个应助WHHW采纳,获得10
35秒前
35秒前
十一发布了新的文献求助10
36秒前
闪闪完成签到,获得积分10
38秒前
炙热冥王星完成签到,获得积分10
38秒前
zhuminghui发布了新的文献求助10
38秒前
HCF发布了新的文献求助10
39秒前
黑妖发布了新的文献求助10
40秒前
积极芷容发布了新的文献求助10
41秒前
laihama完成签到,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921