A small attentional YOLO model for landslide detection from satellite remote sensing images

山崩 计算机科学 遥感 卷积(计算机科学) 瓶颈 人工智能 残余物 频道(广播) 深度学习 阶段(地层学) 计算机视觉 模式识别(心理学) 地质学 算法 人工神经网络 电信 嵌入式系统 古生物学 岩土工程
作者
Libo Cheng,Jia Li,Ping Duan,Mingguo Wang
出处
期刊:Landslides [Springer Science+Business Media]
卷期号:18 (8): 2751-2765 被引量:107
标识
DOI:10.1007/s10346-021-01694-6
摘要

The use of high-spatial-resolution remote sensing image technology on mobile and embedded equipment is an important and effective way for emergency rescue and evaluation decision-makers to quickly and accurately detect landslide areas. Deep learning-based landslide detection models include one-stage and two-stage models. The two-stage landslide detection models are slower. The one-stage landslide detection models are faster but less accurate. Both types of detection models have many parameters. This research aims to improve the speed, accuracy, and parameters of landslide detection models. A you only look once-small attention (YOLO-SA) landslide detection model is proposed. YOLO-SA is an improved version of the one-stage detection model YOLOv4. First, the group convolution (Gconv) and ghost bottleneck (G-bneck) residual modules are used to replace the convolution components and residual module consisting of standard convolution. The purpose is to reduce the parameters of the model. Then, on this basis, an attention mechanism is added to improve the detection accuracy of the model. Finally, the position of the attention mechanism is adjusted to determine the framework of YOLO-SA. Qiaojia and Ludian counties in Yunnan Province, China, are used as the study area to acquire three-channel (red, green, blue) historical landslide optical remote sensing images from Google Earth, with a total of 1818 images, for training the model. YOLO-SA is compared with 11 advanced models, including Faster-RCNN, 3 types of EfficientDet, 2 types of Centernet, SSD-efficient, and 4 types of YOLOv4 models. The results show that the number of YOLO-SA parameters is reduced to 1.472 mb compared to EfficientDet-D0; the accuracy is improved to 94.08% compared to Centernet-hourglass; and the speed is up to 42 f/s. In addition, the effectiveness of the YOLO-SA model for potential landslide detection is verified, with an F1 score of 90.65%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌鱼完成签到,获得积分10
1秒前
狂野菠萝发布了新的文献求助10
1秒前
常涑完成签到,获得积分10
1秒前
小蘑菇应助不爱喝纯牛奶采纳,获得10
1秒前
1秒前
SciGPT应助今夜无人入眠采纳,获得10
2秒前
爱吃粑粑完成签到,获得积分10
2秒前
Y191206完成签到,获得积分10
3秒前
杨诗梦完成签到,获得积分10
3秒前
shirley完成签到,获得积分10
3秒前
科研小糊涂完成签到,获得积分10
4秒前
5秒前
MrH完成签到,获得积分10
5秒前
科研通AI2S应助清爽灵萱采纳,获得10
5秒前
5秒前
提昂发布了新的文献求助10
5秒前
6秒前
yiyi完成签到,获得积分10
6秒前
活ni的pig完成签到 ,获得积分10
7秒前
szc-2000发布了新的文献求助10
7秒前
斯文败类应助vip采纳,获得10
7秒前
努力成为科研大佬完成签到,获得积分10
8秒前
李成哲完成签到,获得积分10
8秒前
hetaopier完成签到,获得积分10
8秒前
Lynn完成签到,获得积分0
9秒前
刘老哥6完成签到,获得积分10
10秒前
10秒前
小肥脸儿完成签到,获得积分10
10秒前
10秒前
开朗向真发布了新的文献求助10
11秒前
满意的初南完成签到 ,获得积分10
11秒前
wanna完成签到,获得积分10
11秒前
11秒前
11秒前
Lc完成签到,获得积分10
11秒前
提昂完成签到,获得积分20
12秒前
12秒前
顾矜应助糖呼噜采纳,获得10
13秒前
飘逸的麦片完成签到 ,获得积分10
13秒前
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841160
求助须知:如何正确求助?哪些是违规求助? 3383161
关于积分的说明 10528368
捐赠科研通 3103115
什么是DOI,文献DOI怎么找? 1709122
邀请新用户注册赠送积分活动 822971
科研通“疑难数据库(出版商)”最低求助积分说明 773728