Deep convolutional neural network for automatic fault recognition from 3D seismic datasets

计算机科学 卷积神经网络 工作流程 人工智能 深度学习 领域(数学) 断层(地质) 人工神经网络 机器学习 分割 模式识别(心理学) 数据挖掘 数据库 数学 地震学 纯数学 地质学
作者
Yu An,Guo Jiu-lin,Qing Ye,Conrad Childs,John J. Walsh,Ruihai Dong
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:153: 104776-104776 被引量:78
标识
DOI:10.1016/j.cageo.2021.104776
摘要

With the explosive growth in seismic data acquisition and the successful application of deep convolutional neural networks (DCNN) to various image processing tasks within multidisciplinary fields, many researchers have begun to research DCNN based automatic seismic interpretation techniques. Due to the vast number of parameters considered in deep neural networks, deep learning methods usually require a large amount of data for training. However, collecting a large number of expert interpretations is very time consuming, so related research usually uses synthetic datasets and ignores the practical problems of field datasets. In this paper, we open-source a multi-gigabyte expert-labelled field dataset in response to the challenge of accessing large-scale expert-labelled field datasets. We show that 2D fault recognition within this dataset is an image segmentation or edge detection problem in the computer vision field, that can be expressed as a pixel-level fault/non-fault binary classification. Both types of DCNNs are compared, and we propose a novel fault recognition workflow, which involves processing and screening of seismic images and labels, training DCNNs and automatic numerical evaluation. We have also demonstrated for three case study datasets that effective image augmentation methods can reduce the required labelled crosslines while maintaining satisfactory performance. Our experimental results show that our workflow not only outperforms two state-of-the-art DCNN solutions but also achieves performance comparable to humans on an expert labelled image dataset, even predicting subtle faults that an expert interpreter did not annotate. We suggest that the proposed workflow could reduce the fault interpretation life cycle from months to hours and improve the quality, and define the confidence, of fault interpretation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
JamesPei应助gost采纳,获得10
6秒前
达不刘完成签到,获得积分20
6秒前
9秒前
犹豫酸奶完成签到,获得积分10
11秒前
火星上誉完成签到 ,获得积分10
12秒前
赘婿应助wack采纳,获得10
13秒前
FashionBoy应助JOEEVE采纳,获得10
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
20秒前
甜甜发布了新的文献求助10
24秒前
cxy完成签到 ,获得积分10
25秒前
残梦发布了新的文献求助30
26秒前
liu关闭了liu文献求助
27秒前
29秒前
29秒前
Elena完成签到,获得积分10
30秒前
alixy发布了新的文献求助10
30秒前
英姑应助小唐采纳,获得10
30秒前
31秒前
lonelymusic完成签到,获得积分10
31秒前
小蘑菇应助阿瓦达啃大瓜采纳,获得10
31秒前
一二完成签到,获得积分10
32秒前
冰冰完成签到 ,获得积分10
32秒前
蜜桃小丸子完成签到 ,获得积分10
33秒前
眰恦完成签到 ,获得积分10
33秒前
言言言言发布了新的文献求助10
34秒前
Elena发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
36秒前
36秒前
hh哈哈完成签到,获得积分20
38秒前
JOEEVE发布了新的文献求助10
38秒前
38秒前
40秒前
41秒前
Cc完成签到 ,获得积分10
42秒前
科研通AI5应助实验老六采纳,获得10
43秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3865494
求助须知:如何正确求助?哪些是违规求助? 3407865
关于积分的说明 10655942
捐赠科研通 3131930
什么是DOI,文献DOI怎么找? 1727400
邀请新用户注册赠送积分活动 832257
科研通“疑难数据库(出版商)”最低求助积分说明 780189