材料科学
碳纳米管
跨导
晶体管
生物电子学
电容
共轭体系
纳米技术
电子迁移率
导电聚合物
光电子学
聚合物
电化学
场效应晶体管
电压
电极
生物传感器
电气工程
复合材料
化学
工程类
物理化学
作者
Silan Zhang,Matteo Massetti,Tero‐Petri Ruoko,Deyu Tu,Chi‐Yuan Yang,Xianjie Liu,Ziang Wu,Yoonjoo Lee,Renee Kroon,Per O. Å. Persson,Han Young Woo,Magnus Berggren,Christian Müller,Mats Fahlman,Simone Fabiano
标识
DOI:10.1002/adfm.202106447
摘要
Abstract Organic electrochemical transistors (OECTs) have the potential to revolutionize the field of organic bioelectronics. To date, most of the reported OECTs include p‐type (semi‐)conducting polymers as the channel material, while n‐type OECTs are yet at an early stage of development, with the best performing electron‐transporting materials still suffering from low transconductance, low electron mobility, and slow response time. Here, the high electrical conductivity of multi‐walled carbon nanotubes (MWCNTs) and the large volumetric capacitance of the ladder‐type π‐conjugated redox polymer poly(benzimidazobenzophenanthroline) (BBL) are leveraged to develop n‐type OECTs with record‐high performance. It is demonstrated that the use of MWCNTs enhances the electron mobility by more than one order of magnitude, yielding fast transistor transient response (down to 15 ms) and high μC * (electron mobility × volumetric capacitance) of about 1 F cm −1 V −1 s −1 . This enables the development of complementary inverters with a voltage gain of >16 and a large worst‐case noise margin at a supply voltage of <0.6 V, while consuming less than 1 µW of power.
科研通智能强力驱动
Strongly Powered by AbleSci AI