硅氢加成
化学
氢原子
聚合
原子转移自由基聚合
高分子化学
金属
光化学
Atom(片上系统)
聚合物
催化作用
有机化学
群(周期表)
计算机科学
嵌入式系统
作者
Zhujun Huang,Zhe Chen,Yuan Jiang,Ning Li,Shicheng Yang,Guowei Wang,Xiangcheng Pan
摘要
Organosilicon compounds and polymers have found wide applications as synthetic building blocks and functional materials. Hydrosilylation is a common strategy toward the synthesis of organosilicon compounds and polymers. Although transition-metal-catalyzed hydrosilylation has achieved great advances, the metal-free hydrosilylation polymerization of dienes and bis(silane)s, especially the one suitable for both electron-rich and electron-deficient dienes, is largely lacking. Herein, we report a visible-light-driven metal-free hydrosilylation polymerization of both electron-rich and electron-deficient dienes with bis(silane)s by using the organic photocatalyst and hydrogen atom transfer (HAT) catalyst. We achieved the well-controlled step-growth hydrosilylation polymerizations of the electron-rich diene and bis(silane) monomer due to the selective activation of Si–H bonds by the organic photocatalyst (4CzIPN) and the thiol polarity reversal reagent (HAT 1). For the electron-deficient dienes, hydrosilylation polymerization and self-polymerization occurred simultaneously in the presence of 4CzIPN and aceclidine (HAT 2), providing the opportunity to produce linear, hyperbranched, and network polymers by rationally tuning the concentration of electron-deficient dienes and the ratio of bis(silane)s and dienes to alter the proportion of the two polymerizations. A wide scope of bis(silane)s and dienes furnished polycarbosilanes with high molecular weight, excellent thermal stability, and tunable architectures.
科研通智能强力驱动
Strongly Powered by AbleSci AI