Detecting mean changes in experience sampling data in real time: A comparison of univariate and multivariate statistical process control methods.

EWMA图表 多元统计 缺少数据 统计 统计过程控制 单变量 库苏姆 自相关 计算机科学 数据挖掘 数学 控制图 过程(计算) 操作系统
作者
Evelien Schat,Francis Tuerlinckx,Arnout C. Smit,Bart De Ketelaere,Eva Ceulemans
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:28 (6): 1335-1357 被引量:16
标识
DOI:10.1037/met0000447
摘要

Detecting early warning signals of developing mood disorders in continuously collected affective experience sampling (ESM) data, would pave the way for timely intervention and prevention of a mood disorder from occurring or to mitigate its severity.However, there is an urgent need for online statistical methods tailored to the specifics of ESM data.Statistical process control (SPC) procedures, originally developed for monitoring industrial processes, seem promising tools.However, affective ESM data violate major assumptions of the SPC procedures: the observations are not independent across time, often skewed distributed and characterized by missingness.Therefore, evaluating SPC performance on simulated data with typical ESM features is a crucial step.In this paper, we didactically introduce six univariate and multivariate SPC procedures: Shewhart and Hoteling's T², EWMA and MEWMA, and CUSUM and MCUSUM.Their behavior is illustrated on publicly available affective ESM data of a patient that relapsed into depression.To deal with the missingness, autocorrelation, and skewness in these data, we compute and monitor the day averages rather than the individual measurement occasions.Moreover, we apply all procedures on simulated data with typical affective ESM features, and evaluate their performance at detecting small to moderate mean changes.The simulation results indicate that the (M)EWMA and (M)CUSUM procedures clearly outperform the Shewhart and Hotelling's T 2 procedures and support using day averages rather than the original data.Based on these results we provide some recommendations for optimizing SPC performance when monitoring ESM data as well as a wide range of directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ATOM发布了新的文献求助10
1秒前
悦耳静枫完成签到,获得积分10
1秒前
缓慢的书蝶完成签到,获得积分10
4秒前
医生小白完成签到 ,获得积分10
4秒前
光之霓裳完成签到 ,获得积分10
5秒前
金金金金完成签到,获得积分10
5秒前
6秒前
小布完成签到 ,获得积分0
7秒前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
11秒前
again发布了新的文献求助30
12秒前
CodeCraft应助大梦想家采纳,获得30
12秒前
13秒前
爆米花应助小永远采纳,获得10
14秒前
是个憨憨完成签到,获得积分10
15秒前
sunny发布了新的文献求助10
16秒前
喝水吗完成签到,获得积分10
16秒前
打打应助曲奇采纳,获得10
16秒前
17秒前
研友_nV2Kyn完成签到,获得积分10
19秒前
19秒前
李雪蒙发布了新的文献求助10
20秒前
psy完成签到,获得积分10
21秒前
金浩森小迷妹完成签到 ,获得积分10
21秒前
22秒前
泡沫发布了新的文献求助10
23秒前
羊村村长完成签到,获得积分10
24秒前
勤奋的寒风完成签到,获得积分10
25秒前
zho应助sunny采纳,获得10
25秒前
无情的函完成签到,获得积分20
26秒前
丘比特应助羊村村长采纳,获得10
28秒前
无情的函发布了新的文献求助10
29秒前
31秒前
35秒前
fighting完成签到 ,获得积分10
36秒前
熊尼发布了新的文献求助10
36秒前
37秒前
again完成签到 ,获得积分10
43秒前
bilibalaa发布了新的文献求助10
44秒前
熊尼完成签到,获得积分10
48秒前
48秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824301
求助须知:如何正确求助?哪些是违规求助? 3366627
关于积分的说明 10441518
捐赠科研通 3085832
什么是DOI,文献DOI怎么找? 1697607
邀请新用户注册赠送积分活动 816410
科研通“疑难数据库(出版商)”最低求助积分说明 769640