材料科学
聚苯乙烯
热稳定性
电介质
聚合物
极限抗拉强度
复合材料
化学工程
光电子学
工程类
作者
Shujuan Wang,Bin Wang,Xiaoting Zhang,Lu Wang,Wei Fan,Hongyan Li,Cheng Bian,Xinli Jing
标识
DOI:10.1016/j.apsusc.2021.151157
摘要
The cross-linked polystyrene (PS) are commonly used plastic materials, however, the greater brittleness and the difficulties in recycling severely limit their applications. In this work, we provide a new strategy for the crosslinking of PS based on the nitrogen-coordinating cyclic boronic ester (NCB) linkages. PS vitrimers are synthesized from PS with hydroxyl groups and isocyanate-terminated NCB oligomer. Incorporating NCB linkages can greatly improve the solvent resistance, thermal stability and mechanical properties of PS without sacrificing its dielectric properties. PS vitrimers exhibit rapid stress relaxation and improved creep resistance due to the stable NCB linkages. PS vitrimers were able to withstand multiple reprocessing cycles via the exchange reactions of NCB linkages without catalyst. The recycled PS vitrimers were shown to regain the structural integrity, mechanical strength and dielectric properties as the original. The glass fibre reinforced PS vitrimer composites were prepared to explore the application in copper clad manufacture, which showed good mechanical properties and can be conveniently recycled to resin solution and clean glass fibre. This work provides a new strategy for the development of the green dielectric polymer materials for copper clad laminates, and may serve as a guide for rational design of dynamic materials based on general-purpose plastics.
科研通智能强力驱动
Strongly Powered by AbleSci AI