EpidemiOptim: A Toolbox for the Optimization of Control Policies in Epidemiological Models

工具箱 计算机科学 强化学习 Python(编程语言) 人工智能 机器学习 最优化问题 人工神经网络 操作系统 算法 程序设计语言
作者
Cédric Colas,Boris P. Hejblum,Sébastien Rouillon,Rodolphe Thiébaut,Pierre-Yves Oudeyer,Clément Moulin-Frier,Mélanie Prague
出处
期刊:Journal of Artificial Intelligence Research [AI Access Foundation]
卷期号:71: 479-519 被引量:19
标识
DOI:10.1613/jair.1.12588
摘要

Modeling the dynamics of epidemics helps to propose control strategies based on pharmaceuticaland non-pharmaceutical interventions (contact limitation, lockdown, vaccination,etc). Hand-designing such strategies is not trivial because of the number of possibleinterventions and the difficulty to predict long-term effects. This task can be cast as an optimization problem where state-of-the-art machine learning methods such as deep reinforcement learning might bring significant value. However, the specificity of each domain|epidemic modeling or solving optimization problems|requires strong collaborationsbetween researchers from different fields of expertise. This is why we introduce EpidemiOptim, a Python toolbox that facilitates collaborations between researchers inepidemiology and optimization. EpidemiOptim turns epidemiological models and cost functions into optimization problems via a standard interface commonly used by optimization practitioners (OpenAI Gym). Reinforcement learning algorithms based on QLearning with deep neural networks (DQN) and evolutionary algorithms (NSGA-II) are already implemented. We illustrate the use of EpidemiOptim to find optimal policies fordynamical on-o lockdown control under the optimization of the death toll and economic recess using a Susceptible-Exposed-Infectious-Removed (SEIR) model for COVID-19. Using EpidemiOptim and its interactive visualization platform in Jupyter notebooks, epidemiologists, optimization practitioners and others (e.g. economists) can easily compare epidemiological models, costs functions and optimization algorithms to address important choicesto be made by health decision-makers. Trained models can be explored by experts and non-experts via a web interface. This article is part of the special track on AI and COVID-19.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
发SCI的小张完成签到,获得积分10
2秒前
2秒前
研友_Lmb15n发布了新的文献求助10
2秒前
3秒前
wddfz完成签到,获得积分10
3秒前
HHHM完成签到,获得积分10
4秒前
4秒前
4秒前
深水中的阳光完成签到,获得积分10
4秒前
zuolan发布了新的文献求助10
8秒前
戈惜发布了新的文献求助10
8秒前
STZHEN发布了新的文献求助10
9秒前
彩色黑米完成签到 ,获得积分10
10秒前
这瓜不卖发布了新的文献求助10
10秒前
良辰应助现代的滑板采纳,获得10
14秒前
15秒前
changyongcheng完成签到 ,获得积分10
15秒前
领导范儿应助patrick采纳,获得10
16秒前
充电宝应助这瓜不卖采纳,获得10
16秒前
木偶完成签到 ,获得积分10
16秒前
19秒前
19秒前
二橦完成签到 ,获得积分10
19秒前
21秒前
21秒前
吴小白发布了新的文献求助10
24秒前
25秒前
研友_VZG7GZ应助aaaaa采纳,获得10
25秒前
呃呃呃发布了新的文献求助10
26秒前
26秒前
flysky120发布了新的文献求助10
27秒前
星辰大海应助葡萄采纳,获得10
27秒前
28秒前
As发布了新的文献求助10
34秒前
35秒前
孤巷的猫完成签到,获得积分10
35秒前
爆米花应助贷款做科研采纳,获得30
37秒前
研友_VZG7GZ应助科研通管家采纳,获得30
38秒前
8R60d8应助科研通管家采纳,获得10
38秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
幼儿游戏与指导(第二版) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833450
求助须知:如何正确求助?哪些是违规求助? 3375894
关于积分的说明 10490910
捐赠科研通 3095467
什么是DOI,文献DOI怎么找? 1704367
邀请新用户注册赠送积分活动 820016
科研通“疑难数据库(出版商)”最低求助积分说明 771703