The relationship between maximum jumping performance and hind limb morphology/physiology in domestic cats (Felis silvestris catus)

跳跃的 解剖 生物 肌肉团 后肢 异速滴定 生理学 生态学 内科学 内分泌学 医学
作者
Michelle A. Harris,Karen Steudel
出处
期刊:The Journal of Experimental Biology [The Company of Biologists]
卷期号:205 (24): 3877-3889 被引量:43
标识
DOI:10.1242/jeb.205.24.3877
摘要

SUMMARY A critical role of functional morphology is to demonstrate form—function relationships that can then be used by evolutionary biologists to infer the evolutionary history of the structure in question. Tests of theoretical expectations about the effects of many aspects of morphology/physiology on locomotor performance have had very mixed results. If systems such as jumping can be shown to reliably predict performance from morphology, this would provide a foundation upon which hypotheses for the evolutionary origin of certain morphologies can be generated. The present study examined whether a relationship exists between maximum takeoff velocity(TOV) and several carefully chosen morphological and physiological traits in domestic cats (Felis silvestris catus). Based on the contributions of extensor muscle work to increasing the kinetic and potential energy of the center of mass (CM) during takeoff, we predicted that maximum TOV would be dependent upon relative limb length, relative extensor muscle mass, body mass and the percentage of fast-twitch muscle fibers. Both maximum TOV and this series of traits were measured in 18 cats. We found that variation in cat maximum TOV is significantly explained by both hind limb length and fat mass relative to lean body mass, but not by extensor muscle mass relative to lean mass or fast-twitch fiber content. The effect of body fat mass is pervasive because it reduces the proportion of muscle mass/body mass and thus increases the muscle work invested in increasing the CM potential energy as compared with kinetic energy during takeoff.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的著发布了新的文献求助10
刚刚
快乐顽童完成签到,获得积分10
1秒前
1秒前
心心哈完成签到 ,获得积分10
1秒前
Vivian完成签到,获得积分10
1秒前
子叶叶子完成签到,获得积分10
1秒前
科研通AI5应助Ly啦啦啦采纳,获得10
1秒前
哈哈哈完成签到,获得积分10
2秒前
2秒前
暖暖完成签到 ,获得积分10
3秒前
Hh完成签到 ,获得积分10
3秒前
许甜甜鸭应助CasterL采纳,获得20
3秒前
研友_ZeK0DL发布了新的文献求助10
3秒前
科研通AI5应助wang采纳,获得10
4秒前
4秒前
ZW完成签到 ,获得积分10
5秒前
今后应助Li采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
不要引力完成签到,获得积分10
5秒前
许甜甜鸭应助科研通管家采纳,获得20
5秒前
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
iNk应助科研通管家采纳,获得10
6秒前
长安完成签到,获得积分10
6秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
lzz应助科研通管家采纳,获得10
7秒前
小白发布了新的文献求助10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
高分求助中
Mehr Wasserstoff mit weniger Iridium 1000
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834161
求助须知:如何正确求助?哪些是违规求助? 3376720
关于积分的说明 10494415
捐赠科研通 3096112
什么是DOI,文献DOI怎么找? 1704857
邀请新用户注册赠送积分活动 820189
科研通“疑难数据库(出版商)”最低求助积分说明 771885