Separator Design to Suppress Dendrite Growth in Lithium-Based Batteries

分离器(采油) 阳极 枝晶(数学) 材料科学 阴极 电流密度 电气工程 电极 化学 工程类 几何学 数学 量子力学 热力学 物理 物理化学
作者
Aniruddha Jana,David R. Ely,R. Edwin Garcı́a
出处
期刊:Meeting abstracts 卷期号:MA2015-01 (1): 34-34
标识
DOI:10.1149/ma2015-01/1/34
摘要

Lithium dendrites are metallic needle-like structures that electrodeposit on the anode of a battery during charging, and on further cycling, penetrate the intermediate polymeric separator layer, and internally short-circuit the battery. Dendritic growth in lithium-based batteries is known to cause battery failures, fires and other accidents. Dendrites in lithium-based batteries remain a critical challenge in graphite and lithium metal anodes for high current density applications. The growth of dendrites limits the current density inside the battery, which in turn limits the maximum power density that can be harnessed from the system. The problem of dendrites needs to be mitigated in order to maximize the power delivered by electric vehicles, and to realize the goal of matching performance of electric vehicles to that of gasoline driven vehicles. In this context, analyzing the effect of the pore size of polymer separators on dendrite growth is important. Traditionally, the problem of dendrite growth has been addressed by making separators thicker and more tortuous. However, such separators contribute to increased impedance losses in the battery, and do not completely suppress dendrite growth. In this study, using phase field models, the electrochemical interactions between the growing dendrite and the static separator are delineated. The objective is to find suitable separator morphologies and structures that are not necessarily thick or tortuous, yet can suppress or at least delay dendrite growth. The Allen-Cahn and Butler-Volmer equations are used to computationally observe the growth of the dendrite through the separator. Spatio-temporal electric fields and deposition/dissolution rates in the separator region are calculated during charging of the battery. It is shown that the growth of the dendrite is a result of two competing forces: the overpotential induced electrodeposition, and the surface tension induced electrodissolution. While high overpotentials cause the dendrite to grow, the curvature of the separator polymer structure imposes surface tension effects that dissolve the dendrite back into the electrolyte. Dendrite growth ceases when there is a dynamic balance between these two forces. Hence, a critical current density, below which dendrite growth can be suppressed, exists. Further, the critical current density can be expressed as a function of the separator pore size and the inclination of the separator channel. Using this concept of critical current density, several regimes of dendrite growth and suppression have been summarized in a map. The map can be used to select suitable separator morphologies for different current density applications (see Figure 1). Existing commercial separators and their ability to suppress dendrite can also be evaluated. In addition to proposing regimes of dendrite growth, the phenomenon of “dead lithium” formation, which is well reported in literature, has been captured and explained. Highly constricted separator channels, due to high surface tension forces, can cause a dendrite arm to dissolve and detach from the main dendrite, thus producing an offshoot of metallic lithium electrodeposit, known as “dead lithium” that floats in the electrolyte. The dead lithium experiences electrodeposition from the cathode side, while its back side, which faces the anode, gets dissolved due to lack of sufficient overpotential. This concurrent electrodeposition and electrodissolution on the two opposing faces create an apparent motion towards the cathode that causes the dead lithium to move, and to finally stick on the cathode surface, thus becoming a deleterious charge concentrator. AJ thanks the Lynn Fellowship Program at Purdue University. REG acknowledges grant DMR 1305634 for partial support. DRE thanks authorities at Ivy Tech Community College for support. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助十七采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
SciGPT应助轻松的飞阳采纳,获得10
2秒前
唐侃发布了新的文献求助10
3秒前
3秒前
左丘尔阳发布了新的文献求助10
4秒前
xiaoZ发布了新的文献求助40
5秒前
充电宝应助方大老辅采纳,获得10
5秒前
程爽发布了新的文献求助10
6秒前
6秒前
我想吃薯条完成签到 ,获得积分10
6秒前
6秒前
7秒前
科目三应助科研阿赢采纳,获得10
7秒前
7秒前
隐形山兰完成签到,获得积分10
8秒前
8秒前
八戒的梦想完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
JamesPei应助wlqc采纳,获得20
9秒前
研友_VZG7GZ应助墩墩采纳,获得10
9秒前
momo完成签到,获得积分10
10秒前
11发布了新的文献求助10
10秒前
zzy发布了新的文献求助30
11秒前
11秒前
卞威振发布了新的文献求助10
12秒前
迷路博完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
12秒前
十七发布了新的文献求助10
12秒前
momo发布了新的文献求助10
13秒前
Baneyhua发布了新的文献求助10
13秒前
14秒前
Jasper应助温柔的海安采纳,获得10
15秒前
麦秋Q完成签到,获得积分20
15秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Single/synchronous adsorption of Cu(II), Cd(II) and Cr(VI) in water by layered double hydroxides doped with different divalent metals 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4290940
求助须知:如何正确求助?哪些是违规求助? 3818060
关于积分的说明 11956883
捐赠科研通 3461636
什么是DOI,文献DOI怎么找? 1898652
邀请新用户注册赠送积分活动 947234
科研通“疑难数据库(出版商)”最低求助积分说明 850032