亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Knowledge Graph Embedding by Translating on Hyperplanes

计算机科学 嵌入 超平面 WordNet公司 关系(数据库) 理论计算机科学 知识图 人工智能 机器学习 数学 数据挖掘 几何学
作者
Zhen Wang,Jianwen Zhang,Jianlin Feng,Zheng Chen
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:28 (1) 被引量:3300
标识
DOI:10.1609/aaai.v28i1.8870
摘要

We deal with embedding a large scale knowledge graph composed of entities and relations into a continuous vector space. TransE is a promising method proposed recently, which is very efficient while achieving state-of-the-art predictive performance. We discuss some mapping properties of relations which should be considered in embedding, such as reflexive, one-to-many, many-to-one, and many-to-many. We note that TransE does not do well in dealing with these properties. Some complex models are capable of preserving these mapping properties but sacrifice efficiency in the process. To make a good trade-off between model capacity and efficiency, in this paper we propose TransH which models a relation as a hyperplane together with a translation operation on it. In this way, we can well preserve the above mapping properties of relations with almost the same model complexity of TransE. Additionally, as a practical knowledge graph is often far from completed, how to construct negative examples to reduce false negative labels in training is very important. Utilizing the one-to-many/many-to-one mapping property of a relation, we propose a simple trick to reduce the possibility of false negative labeling. We conduct extensive experiments on link prediction, triplet classification and fact extraction on benchmark datasets like WordNet and Freebase. Experiments show TransH delivers significant improvements over TransE on predictive accuracy with comparable capability to scale up.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
XZD完成签到,获得积分10
4秒前
zyl完成签到 ,获得积分10
5秒前
上官若男应助阿花阿花采纳,获得10
5秒前
Joseph发布了新的文献求助30
7秒前
liao应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
12秒前
32秒前
35秒前
38秒前
whoknowsname完成签到,获得积分10
41秒前
52秒前
天天快乐应助沉鱼CXX采纳,获得10
56秒前
依米完成签到,获得积分10
57秒前
涂江渝完成签到 ,获得积分10
57秒前
有魅力的人雄完成签到,获得积分10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
鹏虫虫发布了新的文献求助10
1分钟前
1分钟前
1分钟前
FashionBoy应助洞两采纳,获得10
1分钟前
我是老大应助瞿寒采纳,获得30
1分钟前
杨怀托发布了新的文献求助10
1分钟前
鹏虫虫完成签到 ,获得积分10
1分钟前
1分钟前
23333完成签到 ,获得积分10
1分钟前
蛋卷完成签到 ,获得积分10
1分钟前
1分钟前
瞿寒发布了新的文献求助30
1分钟前
哭泣的丝完成签到 ,获得积分10
1分钟前
天下无敌丑娃娃完成签到,获得积分10
1分钟前
鱼鱼鱼完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454735
求助须知:如何正确求助?哪些是违规求助? 4562104
关于积分的说明 14284726
捐赠科研通 4485945
什么是DOI,文献DOI怎么找? 2457157
邀请新用户注册赠送积分活动 1447737
关于科研通互助平台的介绍 1422973