氨基丁酸
化学
立体化学
受体
生物
毒理
生物化学
作者
Chunqing Zhao,John E. Casida
摘要
Isoxazoline insecticides, such as fluralaner (formerly A1443), are noncompetitive γ-aminobutyric acid (GABA) receptor (GABA-R) antagonists with selective toxicity for insects versus mammals. The isoxazoline target in house fly ( Musca domestica ) brain has subnanomolar affinity for [³H]fluralaner and a unique pattern of sensitivity to isoxazolines and avermectin B(1a) (AVE) but not to fipronil and α-endosulfan. Inhibitor specificity profiles for 15 isoxazolines examined with Musca GABA-R and [³H]fluralaner, [³H]-4'-ethynyl-4-n-propylbicycloorthobenzoate ([³H]EBOB), and [³H]AVE binding follow the same structure-activity trends although without high correlation. The 3 most potent of the 15 isoxazolines tested in Musca [³H]fluralaner, [³H]EBOB, and [³H]AVE binding assays and in honeybee (Apis mellifera) brain [³H]fluralaner assays are generally those most toxic to Musca and four agricultural pests. Fluralaner does not inhibit [³H]EBOB binding to the human GABA-R recombinant β₃ homopentamer, which is highly sensitive to all of the commercial GABAergic insecticides. The unique isoxazoline binding site may resurrect the GABA-R as a major insecticide target.
科研通智能强力驱动
Strongly Powered by AbleSci AI