Topological‐Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density

材料科学 电介质 纳米复合材料 介电强度 电场位移场 聚合物纳米复合材料 电场 聚合物 陶瓷 复合数 高-κ电介质 介电损耗 复合材料 光电子学 压电 物理 量子力学
作者
Penghao Hu,Yang Shen,Yuhan Guan,Xuehui Zhang,Yuanhua Lin,Qiming Zhang,Ce‐Wen Nan
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:24 (21): 3172-3178 被引量:401
标识
DOI:10.1002/adfm.201303684
摘要

Dielectric materials with high electric energy densities and low dielectric losses are of critical importance in a number of applications in modern electronic and electrical power systems. An organic–inorganic 0–3 nanocomposite, in which nanoparticles (0‐dimensional) are embedded in a 3‐dimensionally connected polymer matrix, has the potential to combine the high breakdown strength and low dielectric loss of the polymer with the high dielectric constant of the ceramic fillers, representing a promising approach to realize high energy densities. However, one significant drawback of the composites explored up to now is that the increased dielectric constant of the composites is at the expense of the breakdown strength, limiting the energy density and dielectric reliability. In this study, by expanding the traditional 0–3 nanocomposite approach to a multilayered structure which combines the complementary properties of the constituent layers, one can realize both greater dielectric displacement and a higher breakdown field than that of the polymer matrix. In a typical 3‐layer structure, for example, a central nanocomposite layer of higher breakdown strength is introduced to substantially improve the overall breakdown strength of the multilayer‐structured composite film, and the outer composite layers filled with large amount of high dielectric constant nanofillers can then be polarized up to higher electric fields, hence enhancing the electric displacement. As a result, the topological‐structure modulated nanocomposites, with an optimally tailored nanomorphology and composite structure, yield a discharged energy density of 10 J/cm 3 with a dielectric breakdown strength of 450 kV mm –1 , much higher than those reported from all earlier studies of nanocomposites.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Connie发布了新的文献求助10
刚刚
ywl发布了新的文献求助30
1秒前
1秒前
1秒前
1秒前
小蘑菇应助lcwait采纳,获得10
1秒前
帅哥发布了新的文献求助10
1秒前
2秒前
顾矜应助感性的语堂采纳,获得10
2秒前
小王完成签到,获得积分10
2秒前
leena完成签到 ,获得积分10
2秒前
YQQ发布了新的文献求助10
3秒前
我喜欢大学霸应助ning_yang采纳,获得10
3秒前
4秒前
4秒前
云朵完成签到,获得积分10
5秒前
wenbo发布了新的文献求助10
5秒前
小杨完成签到,获得积分10
5秒前
YYL完成签到,获得积分10
5秒前
斯文败类应助kiki采纳,获得10
5秒前
深情安青应助斯文的傲珊采纳,获得10
6秒前
fnuxkjy发布了新的文献求助30
6秒前
xiaoyu完成签到,获得积分10
6秒前
李子木完成签到,获得积分10
7秒前
dacongming发布了新的文献求助10
7秒前
7秒前
可乐加冰发布了新的文献求助10
7秒前
7秒前
meteor发布了新的文献求助20
8秒前
8秒前
快乐难敌发布了新的文献求助10
8秒前
帅哥完成签到,获得积分10
8秒前
Lin2019发布了新的文献求助20
8秒前
8秒前
WD发布了新的文献求助10
9秒前
yydy完成签到,获得积分10
9秒前
10秒前
科研通AI5应助砂锅粥采纳,获得10
10秒前
jhanfglin完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4473633
求助须知:如何正确求助?哪些是违规求助? 3932533
关于积分的说明 12200753
捐赠科研通 3587221
什么是DOI,文献DOI怎么找? 1971960
邀请新用户注册赠送积分活动 1009814
科研通“疑难数据库(出版商)”最低求助积分说明 903460