精度稀释
全球定位系统
计算机科学
支持向量机
算法
GPS信号
辅助全球定位系统
机器学习
电信
全球导航卫星系统应用
作者
Chih‐Hung Wu,Wei-Han Su,Ya-Wei Ho
标识
DOI:10.1109/tim.2010.2049228
摘要
Global Positioning System (GPS) has extensively been used in various fields. Geometric Dilution of Precision (GDOP) is an indicator showing how well the constellation of GPS satellites is geometrically organized. GPS positioning with a low GDOP value usually gains better accuracy. However, the calculation of GDOP is a time- and power-consuming task that involves complicated transformation and inversion of measurement matrices. When selecting from many GPS constellations the one with the lowest GDOP for positioning, methods that can fast and accurately obtain GPS GDOP are imperative. Previous studies have shown that numerical regression on GPS GDOP can get satisfactory results and save many calculation steps. This paper deals with the approximation of GPS GDOP using statistics and machine learning methods. The technique of support vector machines (SVMs) is mainly focused. This study compares the performance of several methods, such as linear regression, pace regression, isotonic regression, SVM, artificial neural networks, and genetic programming (GP). The experimental results show that SVM and GP have better performance than others.
科研通智能强力驱动
Strongly Powered by AbleSci AI