胆固醇7α羟化酶
肝肠循环
CYP8B1
内科学
内分泌学
小异二聚体伴侣
胆盐出口泵
胆汁酸
G蛋白偶联胆汁酸受体
肝受体同系物-1
生物
FGF19型
受体
法尼甾体X受体
核受体
转录因子
医学
基因
生物化学
运输机
成纤维细胞生长因子
作者
Carolien Out,Jurre Hageman,Vincent W. Bloks,Han Gerrits,Maarten D. Sollewijn Gelpke,Trijnie Bos,Rick Havinga,Martin J. Smit,Folkert Kuipers,Albert K. Groen
出处
期刊:Hepatology
[Lippincott Williams & Wilkins]
日期:2011-05-25
卷期号:53 (6): 2075-2085
被引量:46
摘要
Liver receptor homolog-1 (LRH-1) is a nuclear receptor that controls a variety of metabolic pathways. In cultured cells, LRH-1 induces the expression of CYP7A1 and CYP8B1, key enzymes in bile salt synthesis. However, hepatic Cyp7a1 mRNA levels were not reduced upon hepatocyte-specific Lrh-1 deletion in mice. The reason for this apparent paradox has remained elusive. We describe a novel conditional whole-body Lrh-1 knockdown (LRH-1-KD) mouse model to evaluate the dependency of bile salt synthesis and composition on LRH-1. Surprisingly, Cyp7a1 expression was increased rather than decreased under chow-fed conditions in LRH-1-KD mice. This coincided with a significant reduction in expression of intestinal Fgf15, a suppressor of Cyp7a1 expression, and a 58% increase in bile salt synthesis. However, when fecal bile salt loss was stimulated by feeding the bile salt sequestrant colesevelam, Cyp7a1 expression was up-regulated in wildtype mice but not in LRH-1-KD mice (+593% in wildtype versus +9% in LRH-1-KD). This translated into an increase in bile salt synthesis of +272% in wildtype versus +21% in LRH-1-KD mice. Conclusion: Our data provide mechanistic insight into a missing link in the maintenance of bile salt homeostasis during enhanced fecal loss and support the view that LRH-1 controls Cyp7a1 expression from two distinct sites, i.e., liver and ileum, in the enterohepatic circulation. (HEPATOLOGY 2011;)
科研通智能强力驱动
Strongly Powered by AbleSci AI