工作量
稳健性(进化)
眼球运动
计算机科学
小学生
任务(项目管理)
瞳孔大小
眼动
眼睑
人工智能
计算机视觉
验光服务
心理学
工程类
医学
外科
神经科学
化学
系统工程
操作系统
基因
生物化学
作者
Tim Halverson,Justin R. Estepp,James Christensen,Jason W. Monnin
标识
DOI:10.1177/1071181312561012
摘要
Eye movements and pupil size have been used to assess workload in previous research. However, the results presented in the literature vary, and the tasks have been too simple at times or the experimental conditions (e.g. lighting) too tightly controlled to determine if the use of eye data to assess workload is useful in real-world contexts. This research investigates the use of ten eye movement, eyelid, or pupil related metrics as input to support vector machines for classifying workload in a complex task. The results indicate that both pupil size and percentage of eye closure are useful for predicting workload. Further, the combination of the two metrics increases the robustness and accuracy of the workload predictions.
科研通智能强力驱动
Strongly Powered by AbleSci AI