Maximum k-Biplex Search on Bipartite Graphs: A Symmetric-BK Branching Approach

二部图 组合数学 上下界 图形 完全二部图 计算机科学 数学 枚举 离散数学 数学分析
作者
Kaiqiang Yu,Cheng Long
标识
DOI:10.1145/3588729
摘要

Enumerating maximal k-biplexes (MBPs) of a bipartite graph has been used for applications such as fraud detection. Nevertheless, there usually exists an exponential number of MBPs, which brings up two issues when enumerating MBPs, namely the effectiveness issue (many MBPs are of low values) and the efficiency issue (enumerating all MBPs is not affordable on large graphs). Existing proposals of tackling this problem impose constraints on the number of vertices of each MBP to be enumerated, yet they are still not sufficient (e.g., they require to specify the constraints, which is often not user-friendly, and cannot control the number of MBPs to be enumerated directly). Therefore, in this paper, we study the problem of finding K MBPs with the most edges called MaxBPs, where K is a positive integral user parameter. The new proposal well avoids the drawbacks of existing proposals (i.e., the number of MBPs to be enumerated is directly controlled and the MBPs to be enumerated tend to have high values since they have more edges than the majority of MBPs). We formally prove the NP-hardness of the problem. We then design two branch-and-bound algorithms, among which, the better one called FastBB improves the worst-case time complexity to O*(γkn), where O* suppresses the polynomials, γk is a real number that relies on k and is strictly smaller than 2, and n is the number of vertices in the graph. For example, for k=1, γk is equal to 1.754. We further introduce three techniques for boosting the performance of the branch-and-bound algorithms, among which, the best one called PBIE can further improve the time complexity to O*(γkd3) for large sparse graphs, where d is the maximum degree of the graph (note that d< <n for sparse graphs). We conduct extensive experiments on both real and synthetic datasets, and the results show that our algorithm is up to four orders of magnitude faster than all baselines and finding MaxBPs works better than finding all MBPs for a fraud detection application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
Coke发布了新的文献求助10
1秒前
Coke发布了新的文献求助10
1秒前
Coke发布了新的文献求助10
1秒前
Coke发布了新的文献求助10
1秒前
Coke发布了新的文献求助10
1秒前
Coke发布了新的文献求助10
1秒前
lessormoto发布了新的文献求助10
1秒前
九叶发布了新的文献求助10
2秒前
温柔谷冬完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
WQ发布了新的文献求助10
4秒前
Lucas应助拉普兰Z采纳,获得10
4秒前
小二郎应助拉普兰Z采纳,获得10
4秒前
烟花应助拉普兰Z采纳,获得10
4秒前
Ava应助可乐采纳,获得10
6秒前
米九完成签到,获得积分10
6秒前
6秒前
7秒前
又如何发布了新的文献求助10
7秒前
王w发布了新的文献求助10
9秒前
9秒前
甜橙完成签到,获得积分10
10秒前
苏木完成签到,获得积分20
11秒前
lhx完成签到,获得积分0
11秒前
婷婷完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
liuc863发布了新的文献求助10
13秒前
九叶完成签到,获得积分10
14秒前
TAO发布了新的文献求助10
14秒前
ZYC完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
15秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874770
求助须知:如何正确求助?哪些是违规求助? 3417164
关于积分的说明 10702189
捐赠科研通 3141486
什么是DOI,文献DOI怎么找? 1733349
邀请新用户注册赠送积分活动 835996
科研通“疑难数据库(出版商)”最低求助积分说明 782310