马格农
凝聚态物理
自旋波
物理
磁学
自旋电子学
磁化
多铁性
自旋极化
自旋霍尔效应
磁化动力学
颠倒
自旋工程
自旋(空气动力学)
铁电性
铁磁性
材料科学
电子
磁场
量子力学
热力学
电介质
复合材料
作者
Xiaoxi Huang,Xianzhe Chen,Yuhang Li,John Mangeri,Hongrui Zhang,Maya Ramesh,Hossein Taghinejad,Peter Meisenheimer,Lucas Caretta,Sandhya Susarla,Rakshit Jain,Christoph Klewe,Tianye Wang,Rui Chen,Cheng‐Hsiang Hsu,Hao Pan,Yin Jia,Padraic Shafer,Z. Q. Qiu,Davi R. Rodrigues
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:3
标识
DOI:10.48550/arxiv.2306.02185
摘要
A collective excitation of the spin structure in a magnetic insulator can transmit spin-angular momentum with negligible dissipation. This quantum of a spin wave, introduced more than nine decades ago, has always been manipulated through magnetic dipoles, (i.e., timereversal symmetry). Here, we report the experimental observation of chiral-spin transport in multiferroic BiFeO3, where the spin transport is controlled by reversing the ferroelectric polarization (i.e., spatial inversion symmetry). The ferroelectrically controlled magnons produce an unprecedented ratio of up to 18% rectification at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adja-cent magnets, with a spin-torque efficiency being comparable to the spin Hall effect in heavy metals. Utilizing such a controllable magnon generation and transmission in BiFeO3, an alloxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection, and magnetoelectric control. This observation opens a new chapter of multiferroic magnons and paves an alternative pathway towards low-dissipation nanoelectronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI