亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Motion Planning Method for Visual Servoing Using Deep Reinforcement Learning in Autonomous Robotic Assembly

视觉伺服 人工智能 计算机科学 控制器(灌溉) 计算机视觉 强化学习 机器人 运动规划 运动控制器 控制理论(社会学) 运动控制 控制(管理) 农学 生物
作者
Zhenyu Liu,Ke Wang,Daxin Liu,Qide Wang,Jianrong Tan
出处
期刊:IEEE-ASME Transactions on Mechatronics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3513-3524 被引量:9
标识
DOI:10.1109/tmech.2023.3275854
摘要

Assembly positioning by visual servoing (VS) is a basis for autonomous robotic assembly. In practice, VS control suffers potential stability and convergence problems due to image and physical constraints, e.g., field of view constraints, image local minima, obstacle collisions, and occlusion. Therefore, this article proposes a novel deep reinforcement learning-based hybrid visual servoing (DRL-HVS) controller for motion planning of VS tasks. DRL-HVS controller takes current observed image features and camera pose as inputs, and the core parameters of hybrid VS are dynamically optimized using a deep deterministic policy gradient (DDPG) algorithm to obtain an optimal motion scheme, considering image/physical constraints and robot motion performance. In addition, an adaptive exploration strategy is proposed to further improve the training efficiency by adaptively tuning the exploration noise parameters. In this way, the offline pretrained DRL-HVS controller in the virtual environment, where the DDPG actor–critic network is continuously optimized, can be quickly deployed to a real robot system for real-time control. Experiments based on an eye-in-hand VS system are conducted with a calibrated HIKVISION RGB camera mounted on the end-effector of a GSK-RB03A1 six degree-of-freedom (6-DoF) robot. Basic VS task experiments show that the proposed controller achieves better performance than the existing methods: the servoing time is 24% smaller than that of the five-dimensional VS method, a 100% success rate with the perturbed ranges of the initial position within 25 mm for translation and 20° for rotation, and a 48% efficiency improvement. Moreover, a planetary gear component assembly process case study, where the robot aims to automatically put the gears on the gear shafts, is conducted to demonstrate the applicability of the proposed method in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
屁屁小彭发布了新的文献求助10
1秒前
Luka应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
Luka应助科研通管家采纳,获得10
2秒前
风轻萤完成签到,获得积分10
6秒前
11秒前
cici发布了新的文献求助10
17秒前
姜忆霜完成签到 ,获得积分10
30秒前
frap完成签到,获得积分0
44秒前
风华正茂完成签到,获得积分20
45秒前
hanser关注了科研通微信公众号
46秒前
hhhhhh完成签到,获得积分10
49秒前
明白那就发布了新的文献求助10
50秒前
56秒前
西格完成签到 ,获得积分10
1分钟前
学术通zzz发布了新的文献求助10
1分钟前
明白那就完成签到,获得积分20
1分钟前
1分钟前
火星仙人掌完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
赘婿应助cici采纳,获得10
1分钟前
传奇3应助c138zyx采纳,获得10
1分钟前
1分钟前
sihaibo完成签到,获得积分10
1分钟前
c138zyx发布了新的文献求助10
1分钟前
Luka应助科研通管家采纳,获得10
2分钟前
Luka应助科研通管家采纳,获得10
2分钟前
传奇3应助LeoM采纳,获得10
2分钟前
研友_nVWP2Z完成签到 ,获得积分10
2分钟前
2分钟前
任性松鼠发布了新的文献求助10
2分钟前
2分钟前
稳重岩完成签到 ,获得积分10
2分钟前
科研通AI5应助金金金采纳,获得30
2分钟前
Evol发布了新的文献求助10
2分钟前
麻辣小龙虾完成签到,获得积分10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815713
求助须知:如何正确求助?哪些是违规求助? 3359299
关于积分的说明 10402082
捐赠科研通 3077158
什么是DOI,文献DOI怎么找? 1690070
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767703