An integrated underwater structural multi-defects automatic identification and quantification framework for hydraulic tunnel via machine vision and deep learning

计算机科学 水下 人工智能 冗余(工程) 计算机视觉 像素 分割 数据冗余 探测器 海洋学 地质学 操作系统 电信
作者
Yangtao Li,Tengfei Bao,Xianjun Huang,Ruijie Wang,Xiaosong Shu,Bo Xu,Jiuzhou Tu,Yuhang Zhou,Kang Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (4): 2360-2383 被引量:21
标识
DOI:10.1177/14759217221122316
摘要

Underwater structural defects in hydraulic tunnels are highly concealed and difficult to be identified by conventional manual methods. Remotely operated vehicle combined with visible light cameras can provide a noncontact and high spatial resolution damage detection solution. However, manually extracting useful structural damage-related information from massive data is time-consuming and involves high labor cost. This article proposes an integrated pixel-level underwater structural multi-defects instance segmentation and quantification framework for hydraulic tunnels via machine vision and deep learning. Firstly, a tunnel lining underwater structural multi-defects video dataset is developed. Next, an improved You Only Look At CoefficienTs for Edge devices is used to build the detector by exploiting temporal redundancy in videos. Three backbone detectors are used to trade off the balance between detection accuracy and efficiency, and a cross-domain transfer learning strategy is introduced to reduce model training costs and data dependencies. Various complicated tunnel underwater inspection scenarios, including uneven illumination, tilt shooting, high brightness, and motion blur scenarios, are used to evaluate model generalization capability. Experimental results show that ResNet50-based YolactEdge can well trade off the balance between accuracy and speed, which achieves 92.47 bbox mAP, 92.15 mask mAP, and 39.27 FPS in the testing set. A quantification evaluation method is proposed to quantify the detection results and extract the geometric features of structural defects based on digital image processing techniques. The proposed method can accurately identify the number, size, and area of tunnel underwater structural defects, providing data support for subsequent reinforcement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果水完成签到,获得积分20
1秒前
FXQ123_范完成签到,获得积分10
3秒前
在水一方应助科研通管家采纳,获得30
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
闹心应助科研通管家采纳,获得10
4秒前
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
4秒前
邓邓发布了新的文献求助10
5秒前
7秒前
9秒前
10秒前
852应助安静的幼旋采纳,获得10
10秒前
樊哲伟发布了新的文献求助10
12秒前
12秒前
Firmian完成签到,获得积分10
14秒前
14秒前
14秒前
nana发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
dd发布了新的文献求助10
16秒前
麦兜兜应助刘旭采纳,获得10
18秒前
liam发布了新的文献求助10
18秒前
19秒前
20秒前
echo发布了新的文献求助20
20秒前
彭于晏应助义气的成危采纳,获得10
22秒前
好好发布了新的文献求助10
22秒前
等待寄云完成签到 ,获得积分10
24秒前
liam完成签到,获得积分10
27秒前
Akim应助Mg采纳,获得10
27秒前
忐忑的面包完成签到,获得积分20
29秒前
末123456完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777929
求助须知:如何正确求助?哪些是违规求助? 4109039
关于积分的说明 12710955
捐赠科研通 3830933
什么是DOI,文献DOI怎么找? 2113164
邀请新用户注册赠送积分活动 1136691
关于科研通互助平台的介绍 1020760