Multimodal attention-based deep learning for Alzheimer’s disease diagnosis

模式 计算机科学 人工智能 认知 模态(人机交互) 机器学习 集合(抽象数据类型) 深度学习 认知心理学 心理学 神经科学 社会科学 社会学 程序设计语言
作者
Michal Golovanevsky,Carsten Eickhoff,Ritambhara Singh
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:29 (12): 2014-2022 被引量:63
标识
DOI:10.1093/jamia/ocac168
摘要

Abstract Objective Alzheimer’s disease (AD) is the most common neurodegenerative disorder with one of the most complex pathogeneses, making effective and clinically actionable decision support difficult. The objective of this study was to develop a novel multimodal deep learning framework to aid medical professionals in AD diagnosis. Materials and Methods We present a Multimodal Alzheimer’s Disease Diagnosis framework (MADDi) to accurately detect the presence of AD and mild cognitive impairment (MCI) from imaging, genetic, and clinical data. MADDi is novel in that we use cross-modal attention, which captures interactions between modalities—a method not previously explored in this domain. We perform multi-class classification, a challenging task considering the strong similarities between MCI and AD. We compare with previous state-of-the-art models, evaluate the importance of attention, and examine the contribution of each modality to the model’s performance. Results MADDi classifies MCI, AD, and controls with 96.88% accuracy on a held-out test set. When examining the contribution of different attention schemes, we found that the combination of cross-modal attention with self-attention performed the best, and no attention layers in the model performed the worst, with a 7.9% difference in F1-scores. Discussion Our experiments underlined the importance of structured clinical data to help machine learning models contextualize and interpret the remaining modalities. Extensive ablation studies showed that any multimodal mixture of input features without access to structured clinical information suffered marked performance losses. Conclusion This study demonstrates the merit of combining multiple input modalities via cross-modal attention to deliver highly accurate AD diagnostic decision support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BCKT发布了新的文献求助10
1秒前
小绵羊完成签到,获得积分20
1秒前
reds发布了新的文献求助10
1秒前
舒服的灵安完成签到 ,获得积分10
4秒前
虚拟莫茗完成签到 ,获得积分10
4秒前
端庄代荷完成签到 ,获得积分10
10秒前
11秒前
BCKT完成签到,获得积分10
11秒前
活力的语堂完成签到 ,获得积分10
20秒前
lynn完成签到 ,获得积分10
23秒前
Tonald Yang完成签到 ,获得积分20
24秒前
26秒前
ok123完成签到 ,获得积分10
29秒前
大轩完成签到 ,获得积分10
29秒前
云岫完成签到 ,获得积分10
30秒前
珍珠火龙果完成签到 ,获得积分10
31秒前
zzh完成签到 ,获得积分10
37秒前
40秒前
无辜凝天完成签到,获得积分10
44秒前
玄之又玄完成签到,获得积分10
45秒前
健脊护柱完成签到 ,获得积分10
46秒前
48秒前
pengchen完成签到 ,获得积分10
50秒前
董阳发布了新的文献求助10
52秒前
53秒前
benyu完成签到,获得积分10
55秒前
NiNi完成签到,获得积分20
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
九花青完成签到,获得积分10
1分钟前
LIKUN完成签到,获得积分10
1分钟前
1分钟前
陈JY完成签到 ,获得积分10
1分钟前
CodeCraft应助zky采纳,获得10
1分钟前
不舍天真完成签到,获得积分10
1分钟前
无花果应助小作坊钳工采纳,获得10
1分钟前
时代更迭完成签到 ,获得积分10
1分钟前
无趣养乐多完成签到 ,获得积分10
1分钟前
藜藜藜在乎你完成签到 ,获得积分10
1分钟前
Layace完成签到 ,获得积分10
1分钟前
xinran_lv完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495301
关于积分的说明 11076179
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783324
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839