Quantifying the nonlinear response of vegetation greening to driving factors in Longnan of China based on machine learning algorithm

绿化 植被(病理学) 环境科学 草原 驱动因素 降水 植被分类 自然地理学 生态系统 生态学 中国 地理 气象学 生物 病理 考古 医学
作者
Xiong Xiao,Qingzheng Wang,Qingyu Guan,Zepeng Zhang,Yong Yan,Jimin Mi,Enqi Yang
出处
期刊:Ecological Indicators [Elsevier]
卷期号:151: 110277-110277 被引量:21
标识
DOI:10.1016/j.ecolind.2023.110277
摘要

The main influencing factors and their nonlinear effects on the changes of vegetation in China’s mountainous areas under the interaction of different factors are not yet clear, and comprehending the evolutionary trends and driving mechanisms of vegetation is crucial to reveal the changes in ecosystem structure and function. In this study, trend analysis (M−K, T-S and EEMD) combined with machine learning algorithm, namely Boosted Regression Tree model (BRT), were used to quantify the trends of nonlinear responses and thresholds for bioclimatic variables, topography, soil properties and anthropogenic factors for vegetation changes in Longnan. The results showed that the trend analysis clearly confirm the increasing trend of vegetation at multiple spatio-temporal scales. The BRT indicated that total precipitation (bio12, 15.22%), land use (LUCC, 12.68%), elevation (DEM, 11.20%), and population density (Pd, 9.20%) were the more important factors of dominant vegetation greening. Bioclimatic variables were found to revealed the effects of climate with vegetation more clearly. In addition, the BRT revealed that the selected factors have the different nonlinear response relationships to vegetation greening trend and specific thresholds. Among them, increasing of cropland, grassland and forestland can promote vegetation greening. However, GDP, Pd, DEM, bio12, mean diurnal range and temperature seasonality (bio2, bio4) exceed the threshold can significantly inhibit vegetation growth. The BRT combined with trend analysis revealed the nonlinear response relationships and thresholds of the drivers behind the vegetation change patterns, which have obvious effects in exploring the driving mechanisms of vegetation changes in mountainous areas. This study provided an important reference for better revealing the interaction mechanisms between vegetation changes and drivers in the semi-humid zone in East Asia even globally.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助冬雪采纳,获得20
刚刚
1秒前
无糖凉茶完成签到,获得积分10
1秒前
1秒前
LL完成签到,获得积分10
3秒前
小兔子乖乖完成签到 ,获得积分10
3秒前
4秒前
4秒前
马昌进完成签到,获得积分10
5秒前
和谐的鹤轩完成签到 ,获得积分10
5秒前
简简发布了新的文献求助10
6秒前
雨柏完成签到 ,获得积分10
6秒前
etrh完成签到 ,获得积分10
7秒前
AndyHan630完成签到,获得积分10
7秒前
shuqi完成签到 ,获得积分10
7秒前
可爱的函函应助一条闲鱼采纳,获得10
8秒前
乐观海云完成签到 ,获得积分10
8秒前
科研助理完成签到,获得积分10
8秒前
9秒前
Jiangpeng完成签到,获得积分10
9秒前
敏感笑槐完成签到 ,获得积分10
9秒前
大亮完成签到 ,获得积分10
10秒前
ff不吃芹菜完成签到,获得积分10
10秒前
JIECHENG完成签到 ,获得积分10
11秒前
欣欣完成签到 ,获得积分10
12秒前
SHANSHAN完成签到 ,获得积分10
12秒前
xupt唐僧完成签到 ,获得积分10
13秒前
王硕磊完成签到,获得积分10
13秒前
你好完成签到,获得积分20
13秒前
13秒前
淡淡丹妗发布了新的文献求助10
14秒前
杨胜菲完成签到,获得积分10
14秒前
14秒前
可爱的若男完成签到 ,获得积分10
14秒前
智发完成签到,获得积分10
16秒前
科研助理发布了新的文献求助10
16秒前
刘菠萝完成签到 ,获得积分10
17秒前
Skyllne完成签到 ,获得积分10
18秒前
默默白开水完成签到 ,获得积分10
19秒前
123123完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600022
求助须知:如何正确求助?哪些是违规求助? 4685803
关于积分的说明 14839504
捐赠科研通 4674748
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505640
关于科研通互助平台的介绍 1471109