In-silico clearing approach for deep refractive index tomography by partial reconstruction and wave-backpropagation

可视化 断层重建 反向传播 断层摄影术 折射率 迭代重建 人工智能 计算机科学 可解释性 光学 生物系统 材料科学 物理 人工神经网络 生物
作者
Osamu Yasuhiko,K. Takeuchi
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:12 (1) 被引量:3
标识
DOI:10.1038/s41377-023-01144-z
摘要

Refractive index (RI) is considered to be a fundamental physical and biophysical parameter in biological imaging, as it governs light-matter interactions and light propagation while reflecting cellular properties. RI tomography enables volumetric visualization of RI distribution, allowing biologically relevant analysis of a sample. However, multiple scattering (MS) and sample-induced aberration (SIA) caused by the inhomogeneity in RI distribution of a thick sample make its visualization challenging. This paper proposes a deep RI tomographic approach to overcome MS and SIA and allow the enhanced reconstruction of thick samples compared to that enabled by conventional linear-model-based RI tomography. The proposed approach consists of partial RI reconstruction using multiple holograms acquired with angular diversity and their backpropagation using the reconstructed partial RI map, which unambiguously reconstructs the next partial volume. Repeating this operation efficiently reconstructs the entire RI tomogram while suppressing MS and SIA. We visualized a multicellular spheroid of diameter 140 µm within minutes of reconstruction, thereby demonstrating the enhanced deep visualization capability and computational efficiency of the proposed method compared to those of conventional RI tomography. Furthermore, we quantified the high-RI structures and morphological changes inside multicellular spheroids, indicating that the proposed method can retrieve biologically relevant information from the RI distribution. Benefitting from the excellent biological interpretability of RI distributions, the label-free deep visualization capability of the proposed method facilitates a noninvasive understanding of the architecture and time-course morphological changes of thick multicellular specimens.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静高山发布了新的文献求助10
1秒前
night完成签到,获得积分10
2秒前
冷风完成签到 ,获得积分10
2秒前
陈zz完成签到,获得积分10
2秒前
6秒前
研友_ndDY5n发布了新的文献求助10
6秒前
7秒前
李爱国应助ZHY采纳,获得10
10秒前
布曲发布了新的文献求助10
10秒前
comosum完成签到,获得积分10
10秒前
妍yan完成签到,获得积分10
12秒前
丘比特应助dou采纳,获得10
12秒前
Shownsigns发布了新的文献求助10
12秒前
luwei358完成签到,获得积分10
13秒前
YOYOYO应助贝利亚采纳,获得20
13秒前
14秒前
完美世界应助Cope采纳,获得10
18秒前
zhuhaot应助Lds采纳,获得10
19秒前
19秒前
傲娇蜻蜓完成签到,获得积分10
21秒前
伏波完成签到,获得积分10
22秒前
暴躁的梦岚完成签到,获得积分10
22秒前
23秒前
Shownsigns完成签到,获得积分10
24秒前
松19发布了新的文献求助30
24秒前
24秒前
爆米花应助刘小雨采纳,获得10
24秒前
烟花应助penguin采纳,获得10
25秒前
SDM完成签到 ,获得积分10
26秒前
宋琪琪发布了新的文献求助10
27秒前
充电宝应助跳跃萍采纳,获得10
27秒前
蓝心语发布了新的文献求助10
30秒前
优雅的猪完成签到,获得积分10
31秒前
烟花应助美美哒采纳,获得10
31秒前
dou发布了新的文献求助10
33秒前
帅气西牛完成签到,获得积分10
35秒前
丘比特应助贝利亚采纳,获得10
35秒前
Selina完成签到 ,获得积分10
35秒前
SciGPT应助cherry采纳,获得10
36秒前
蓝心语完成签到,获得积分10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243