Disease progression based feature screening for ultrahigh‐dimensional survival‐associated biomarkers

特征选择 一致性 疾病 推论 生物标志物 特征(语言学) 计算机科学 肿瘤科 生物标志物发现 医学 机器学习 人工智能 内科学 生物 蛋白质组学 哲学 基因 生物化学 语言学
作者
Mengjiao Peng,Liming Xiang
出处
期刊:Statistics in Medicine [Wiley]
卷期号:42 (13): 2082-2100 被引量:1
标识
DOI:10.1002/sim.9712
摘要

The increased availability of ultrahigh-dimensional biomarker data and the high demand of identifying biomarkers importantly related to survival outcomes made feature screening methods commonplace in the analysis of cancer genome data. When survival outcomes include endpoints of overall survival (OS) and time-to-progression (TTP), a high concordance is typically found in both endpoints in cancer studies, namely, patients' OS would most likely be extended when tumour progression is delayed. Existing screening procedures are often performed on a single survival endpoint only and may result in biased selection of features for OS in ignorance of disease progression. We propose a novel feature screening method by incorporating information of TTP into the selection of important biomarker predictors for more accurate inference of OS subsequent to disease progression. The proposal is based on the rank of correlation between individual features and the conditional distribution of OS given observations of TTP. It is advantageous for its flexible model nature, which requires no marginal model assumption for each endpoint, and its minimal computational cost for implementation. Theoretical results show its ranking consistency, sure screening and false rate control properties. Simulation results demonstrate that the proposed screener leads to more accurate feature selection than the method without considering the prior observations of disease progression. An application to breast cancer genome data illustrates its practical utility and facilitates disease classification using selected biomarker predictors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小邓完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
尊敬寒松发布了新的文献求助10
2秒前
living笑白完成签到,获得积分10
2秒前
Alex应助1351567822采纳,获得30
3秒前
3秒前
4秒前
DAVID完成签到,获得积分10
5秒前
学术大咖完成签到 ,获得积分10
5秒前
Lucas应助www采纳,获得10
6秒前
wxt完成签到 ,获得积分10
6秒前
全或无完成签到,获得积分10
6秒前
6秒前
科研通AI5应助开放的高山采纳,获得10
7秒前
7秒前
sybil完成签到,获得积分10
8秒前
Chambray发布了新的文献求助10
8秒前
晓兴兴发布了新的文献求助10
8秒前
wangx发布了新的文献求助10
8秒前
王王完成签到,获得积分10
9秒前
鹊起惊梦完成签到,获得积分10
9秒前
复杂的香菱完成签到,获得积分10
9秒前
英俊的铭应助小龙采纳,获得20
9秒前
JamesPei应助聪明的傲白采纳,获得10
10秒前
平淡的依秋完成签到,获得积分10
10秒前
k13524完成签到,获得积分10
11秒前
淡水鱼完成签到 ,获得积分10
11秒前
11秒前
105度余温完成签到,获得积分10
11秒前
guoanhong发布了新的文献求助10
12秒前
爆米花应助吕小软采纳,获得10
12秒前
13秒前
14秒前
XavierLee发布了新的文献求助10
14秒前
科研通AI5应助Stringgggg采纳,获得10
15秒前
15秒前
彭于晏应助丫丫采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785225
求助须知:如何正确求助?哪些是违规求助? 3330781
关于积分的说明 10248184
捐赠科研通 3046175
什么是DOI,文献DOI怎么找? 1671900
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868