BiTNet: Hybrid deep convolutional model for ultrasound image analysis of human biliary tract and its applications

卷积神经网络 计算机科学 人工智能 过度自信效应 工作量 人工神经网络 超声波 机器学习 模式识别(心理学) 放射科 医学 心理学 社会心理学 操作系统
作者
Thanapong Intharah,Kannika Wiratchawa,Yupaporn Wanna,Prem Junsawang,Attapol Titapun,Anchalee Techasen,Arunnit Boonrod,Vallop Laopaiboon,Nittaya Chamadol,Narong Khuntikeo
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:139: 102539-102539 被引量:2
标识
DOI:10.1016/j.artmed.2023.102539
摘要

Certain life-threatening abnormalities, such as cholangiocarcinoma, in the human biliary tract are curable if detected at an early stage, and ultrasonography has been proven to be an effective tool for identifying them. However, the diagnosis often requires a second opinion from experienced radiologists, who are usually overwhelmed by many cases. Therefore, we propose a deep convolutional neural network model, named biliary tract network (BiTNet), developed to solve problems in the current screening system and to avoid overconfidence issues of traditional deep convolutional neural networks. Additionally, we present an ultrasound image dataset for the human biliary tract and demonstrate two artificial intelligence (AI) applications: auto-prescreening and assisting tools. The proposed model is the first AI model to automatically screen and diagnose upper-abdominal abnormalities from ultrasound images in real-world healthcare scenarios. Our experiments suggest that prediction probability has an impact on both applications, and our modifications to EfficientNet solve the overconfidence problem, thereby improving the performance of both applications and of healthcare professionals. The proposed BiTNet can reduce the workload of radiologists by 35% while keeping the false negatives to as low as 1 out of every 455 images. Our experiments involving 11 healthcare professionals with four different levels of experience reveal that BiTNet improves the diagnostic performance of participants of all levels. The mean accuracy and precision of the participants with BiTNet as an assisting tool (0.74 and 0.61, respectively) are statistically higher than those of participants without the assisting tool (0.50 and 0.46, respectively (p<0.001)). These experimental results demonstrate the high potential of BiTNet for use in clinical settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详忆山发布了新的文献求助10
刚刚
2秒前
wanci应助longwang采纳,获得10
2秒前
啊哈发布了新的文献求助10
3秒前
二世小卒完成签到 ,获得积分10
4秒前
科研通AI2S应助wise111采纳,获得10
5秒前
英俊的铭应助LLLL采纳,获得30
6秒前
爆米花应助时间地点条件采纳,获得10
7秒前
7秒前
Jasper应助yuyu采纳,获得10
12秒前
16秒前
17秒前
17秒前
冰棒比冰冰完成签到 ,获得积分10
17秒前
正在完成签到 ,获得积分10
18秒前
18秒前
18秒前
hz_sz发布了新的文献求助10
21秒前
21秒前
21秒前
乔达摩完成签到 ,获得积分10
21秒前
22秒前
22秒前
22秒前
隐形曼青应助哪吒采纳,获得10
23秒前
领导范儿应助突突突采纳,获得10
24秒前
活力寄凡发布了新的文献求助10
24秒前
25秒前
26秒前
诺一44发布了新的文献求助10
26秒前
guozizi发布了新的文献求助10
26秒前
27秒前
黄小佳完成签到,获得积分10
30秒前
30秒前
楼萌黑发布了新的文献求助10
31秒前
开心的万天完成签到,获得积分10
31秒前
顾矜应助不懂白采纳,获得10
32秒前
黄小佳发布了新的文献求助30
33秒前
guozizi发布了新的文献求助10
34秒前
longwang发布了新的文献求助10
35秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803841
求助须知:如何正确求助?哪些是违规求助? 3348632
关于积分的说明 10339665
捐赠科研通 3064787
什么是DOI,文献DOI怎么找? 1682776
邀请新用户注册赠送积分活动 808429
科研通“疑难数据库(出版商)”最低求助积分说明 764096