清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integrating large‐scale meta‐analysis of genome‐wide association studies improve the genomic prediction accuracy for combined pig populations

最佳线性无偏预测 全基因组关联研究 单核苷酸多态性 遗传力 人口 生物 数量性状位点 遗传关联 遗传学 统计 计算生物学 选择(遗传算法) 数学 计算机科学 基因型 医学 基因 机器学习 环境卫生
作者
Xiaodian Cai,Wenjing Zhang,Ning Gao,Chen Wei,Xibo Wu,Jinglei Si,Yahui Gao,Jiaqi Li,Tong Yin,Zhe Zhang
出处
期刊:Journal of Animal Breeding and Genetics [Wiley]
卷期号:142 (2): 223-236 被引量:4
标识
DOI:10.1111/jbg.12896
摘要

Abstract The strategy of combining reference populations has been widely recognized as an effective way to enhance the accuracy of genomic prediction (GP). This study investigated the efficiency of genomic prediction using prior information and combined reference population. In total, prior information considering trait‐associated single nucleotide polymorphisms (SNPs) obtained from meta‐analysis of genome‐wide association studies (GWAS meta‐analysis) was incorporated into three models to assess the performance of GP using combined reference populations. Two different Yorkshire populations with imputed whole genome sequence (WGS) data (9,741,620 SNPs), named as P1 (1259 individuals) and P2 (1018 individuals), were used to predict genomic estimated breeding values for three live carcass traits, including backfat thickness, loin muscle area, and loin muscle depth. A 10 × 5 fold cross‐validation was used to evaluate the prediction accuracy of 203 randomly selected candidate pigs from the P2 population and the reference population consisted of the remaining pigs from P2 and the stepwise added pigs from P1. By integrating SNPs with different p ‐value thresholds from GWAS meta‐analysis downloaded from PigGTEx Project, the prediction accuracy of GBLUP, genomic feature BLUP (GFBLUP) and GBLUP given genetic architecture (BLUP|GA) were compared. Moreover, we explored effects of reference population size and heritability enrichment of genomic features on the prediction accuracy improvement of GFBLUP and BLUP|GA relative to GBLUP. The prediction accuracy of GBLUP using all WGS markers showed average improvement of 4.380% using the P1 + P2 reference population compared with the P2 reference population. Using the combined reference population, GFBLUP and BLUP|GA yielded 6.179% and 5.525% higher accuracies than GBLUP using all SNPs based on the single reference population, respectively. Positive regression coefficients were estimated in relation to the improvement in prediction accuracy (between GFBLUP/BLUP|GA and GBLUP) and the size of the reference as well as the heritability enrichment of genomic features. Compared to the classic GBLUP model, GFBLUP and BLUP|GA models integrating GWAS meta‐analysis information increase the prediction accuracy and using combined populations with enlarged reference population size further enhances prediction accuracy of the two approaches. The heritability enrichment of genomic features can be used as an indicator to reflect weather prior information is accurately presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
Sunny完成签到,获得积分10
27秒前
忧郁小鸽子完成签到,获得积分10
31秒前
常有李完成签到,获得积分10
36秒前
嗯嗯应助zhaoyg采纳,获得10
1分钟前
1分钟前
情怀应助猫抓板采纳,获得10
1分钟前
1分钟前
zhaoyg完成签到,获得积分10
1分钟前
兴奋的若菱完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
猫抓板发布了新的文献求助10
1分钟前
科研通AI6应助猫抓板采纳,获得10
2分钟前
Un1que完成签到,获得积分10
2分钟前
2分钟前
Un1que发布了新的文献求助10
2分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
刘烨完成签到 ,获得积分10
3分钟前
Panther完成签到,获得积分10
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
spinon发布了新的文献求助10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
4分钟前
唠叨的凌雪完成签到,获得积分10
4分钟前
ilihe应助spinon采纳,获得10
4分钟前
幽默的初雪应助spinon采纳,获得10
4分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Kevin完成签到,获得积分10
4分钟前
5分钟前
spinon完成签到,获得积分10
5分钟前
稳重班发布了新的文献求助30
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671314
求助须知:如何正确求助?哪些是违规求助? 4914988
关于积分的说明 15134577
捐赠科研通 4830135
什么是DOI,文献DOI怎么找? 2586856
邀请新用户注册赠送积分活动 1540436
关于科研通互助平台的介绍 1498661