Integrating large‐scale meta‐analysis of genome‐wide association studies improve the genomic prediction accuracy for combined pig populations

最佳线性无偏预测 全基因组关联研究 单核苷酸多态性 遗传力 人口 生物 数量性状位点 遗传关联 遗传学 统计 计算生物学 选择(遗传算法) 数学 计算机科学 基因型 医学 基因 机器学习 环境卫生
作者
Xiaodian Cai,Wenjing Zhang,Ning Gao,Chen Wei,Xibo Wu,Jinglei Si,Yahui Gao,Jiaqi Li,Tong Yin,Zhe Zhang
出处
期刊:Journal of Animal Breeding and Genetics [Wiley]
标识
DOI:10.1111/jbg.12896
摘要

Abstract The strategy of combining reference populations has been widely recognized as an effective way to enhance the accuracy of genomic prediction (GP). This study investigated the efficiency of genomic prediction using prior information and combined reference population. In total, prior information considering trait‐associated single nucleotide polymorphisms (SNPs) obtained from meta‐analysis of genome‐wide association studies (GWAS meta‐analysis) was incorporated into three models to assess the performance of GP using combined reference populations. Two different Yorkshire populations with imputed whole genome sequence (WGS) data (9,741,620 SNPs), named as P1 (1259 individuals) and P2 (1018 individuals), were used to predict genomic estimated breeding values for three live carcass traits, including backfat thickness, loin muscle area, and loin muscle depth. A 10 × 5 fold cross‐validation was used to evaluate the prediction accuracy of 203 randomly selected candidate pigs from the P2 population and the reference population consisted of the remaining pigs from P2 and the stepwise added pigs from P1. By integrating SNPs with different p ‐value thresholds from GWAS meta‐analysis downloaded from PigGTEx Project, the prediction accuracy of GBLUP, genomic feature BLUP (GFBLUP) and GBLUP given genetic architecture (BLUP|GA) were compared. Moreover, we explored effects of reference population size and heritability enrichment of genomic features on the prediction accuracy improvement of GFBLUP and BLUP|GA relative to GBLUP. The prediction accuracy of GBLUP using all WGS markers showed average improvement of 4.380% using the P1 + P2 reference population compared with the P2 reference population. Using the combined reference population, GFBLUP and BLUP|GA yielded 6.179% and 5.525% higher accuracies than GBLUP using all SNPs based on the single reference population, respectively. Positive regression coefficients were estimated in relation to the improvement in prediction accuracy (between GFBLUP/BLUP|GA and GBLUP) and the size of the reference as well as the heritability enrichment of genomic features. Compared to the classic GBLUP model, GFBLUP and BLUP|GA models integrating GWAS meta‐analysis information increase the prediction accuracy and using combined populations with enlarged reference population size further enhances prediction accuracy of the two approaches. The heritability enrichment of genomic features can be used as an indicator to reflect weather prior information is accurately presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜗牛发布了新的文献求助30
1秒前
等下完这场雨完成签到,获得积分10
2秒前
赘婿应助yy采纳,获得10
2秒前
豆子完成签到,获得积分10
3秒前
SciGPT应助吃花生酱的猫采纳,获得10
10秒前
10秒前
专玩对抗路完成签到,获得积分10
16秒前
豆子完成签到,获得积分10
19秒前
领导范儿应助lkgxwpf采纳,获得10
22秒前
蜗牛完成签到 ,获得积分20
25秒前
31秒前
32秒前
000完成签到,获得积分10
34秒前
Suica发布了新的文献求助10
34秒前
37秒前
39秒前
Lucas应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
40秒前
40秒前
陆王牛马发布了新的文献求助20
42秒前
悦耳孤萍发布了新的文献求助10
43秒前
李健应助天空没有极限采纳,获得10
43秒前
45秒前
45秒前
Yunny关注了科研通微信公众号
48秒前
wk完成签到,获得积分10
49秒前
科研狗完成签到,获得积分10
49秒前
兔BF完成签到,获得积分10
50秒前
51秒前
尊敬的半梅完成签到 ,获得积分10
51秒前
53秒前
Owen应助Roseaiwade采纳,获得10
53秒前
欣喜的书芹完成签到 ,获得积分10
54秒前
领导范儿应助悦耳孤萍采纳,获得10
55秒前
隐形的巴豆完成签到,获得积分10
56秒前
57秒前
1分钟前
1分钟前
chen完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781847
求助须知:如何正确求助?哪些是违规求助? 3327435
关于积分的说明 10231205
捐赠科研通 3042315
什么是DOI,文献DOI怎么找? 1669967
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758808