Identification of millet origin using terahertz spectroscopy combined with ensemble learning

机器学习 支持向量机 随机森林 预处理器 集成学习 模式识别(心理学) 堆积 计算机科学 数据挖掘 算法 人工智能 物理 核磁共振
作者
Xianhua Yin,Hao Tian,Fuqiang Zhang,Chuanpei Xu,Qiang Cai,Yongbing Wei
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:142: 105547-105547
标识
DOI:10.1016/j.infrared.2024.105547
摘要

It's crucial for both producers and consumers to accurately trace the origin of millet, given the significant differences in price and taste that exist between millets from various origins. The traditional method of identifying the origin of millet is time-consuming, laborious, complex, and destructive. In this study, a new method for fast and non-destructive differentiation of millet origins is developed by combining terahertz time domain spectroscopy with ensemble learning. Firstly, three machine learning algorithms, namely support vector machine (SVM), random forest (RF), and kernel extreme learning machine (KELM), were used to build different discriminative models, and then the impact of six different preprocessing methods on the models' classification performance was compared. It was observed that models employing Savitzky-Golay preprocessing exhibited pronounced superiority in accurately determining the millet's geographical origins. Building upon these findings, the research introduces an innovative ensemble learning strategy, leveraging both topsis and stacking techniques, to harness the collective strengths of the three algorithms. The outcomes of this approach reveal its remarkable capacity to distinguish millets originating from five distinct locations without the necessity for any parameter fine-tuning. The accuracy, F1 score, and Kappa on the prediction set are all 100 %, which significantly outperforms the single model, traditional voting method, and stacking method. The culmination of this study suggests that the integration of terahertz time-domain spectroscopy and TOPSIS-Stacking ensemble learning emerges as a promising method for the swift and non-intrusive discrimination of millet geographical origins with remarkable precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZHQ发布了新的文献求助10
1秒前
斯文败类应助zhouyan采纳,获得10
1秒前
天天快乐应助mei采纳,获得10
1秒前
1秒前
luckzzz发布了新的文献求助10
1秒前
潇洒的半梅完成签到,获得积分10
2秒前
2秒前
丘比特应助木又权采纳,获得10
2秒前
JF123_完成签到 ,获得积分10
2秒前
2秒前
非泥完成签到,获得积分10
3秒前
MHX完成签到,获得积分10
3秒前
Triste完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
彭于晏应助jtc采纳,获得10
4秒前
4秒前
5秒前
5秒前
科研通AI2S应助ZGZ123采纳,获得15
5秒前
SYLH应助机智小猫咪采纳,获得10
5秒前
思芋奶糕发布了新的文献求助10
5秒前
可爱的函函应助布丁采纳,获得10
5秒前
英吉利25发布了新的文献求助10
6秒前
球球尧伞耳完成签到,获得积分10
7秒前
奋斗含巧发布了新的文献求助10
7秒前
善学以致用应助sheng采纳,获得10
7秒前
niuniu发布了新的文献求助10
7秒前
施耐德完成签到,获得积分10
7秒前
西南西南发布了新的文献求助10
7秒前
7秒前
PPPhua完成签到 ,获得积分20
8秒前
猪猪hero发布了新的文献求助20
8秒前
8秒前
jjwen完成签到 ,获得积分10
8秒前
之间完成签到,获得积分10
8秒前
Hello应助温婉的人雄采纳,获得10
8秒前
大模型应助luckzzz采纳,获得10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3977279
求助须知:如何正确求助?哪些是违规求助? 3521546
关于积分的说明 11208673
捐赠科研通 3258557
什么是DOI,文献DOI怎么找? 1799294
邀请新用户注册赠送积分活动 878161
科研通“疑难数据库(出版商)”最低求助积分说明 806810