Identification of millet origin using terahertz spectroscopy combined with ensemble learning

机器学习 支持向量机 随机森林 预处理器 集成学习 模式识别(心理学) 堆积 计算机科学 数据挖掘 算法 人工智能 物理 核磁共振
作者
Xianhua Yin,Hao Tian,Fuqiang Zhang,Chuanpei Xu,Qiang Cai,Yongbing Wei
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:142: 105547-105547
标识
DOI:10.1016/j.infrared.2024.105547
摘要

It's crucial for both producers and consumers to accurately trace the origin of millet, given the significant differences in price and taste that exist between millets from various origins. The traditional method of identifying the origin of millet is time-consuming, laborious, complex, and destructive. In this study, a new method for fast and non-destructive differentiation of millet origins is developed by combining terahertz time domain spectroscopy with ensemble learning. Firstly, three machine learning algorithms, namely support vector machine (SVM), random forest (RF), and kernel extreme learning machine (KELM), were used to build different discriminative models, and then the impact of six different preprocessing methods on the models' classification performance was compared. It was observed that models employing Savitzky-Golay preprocessing exhibited pronounced superiority in accurately determining the millet's geographical origins. Building upon these findings, the research introduces an innovative ensemble learning strategy, leveraging both topsis and stacking techniques, to harness the collective strengths of the three algorithms. The outcomes of this approach reveal its remarkable capacity to distinguish millets originating from five distinct locations without the necessity for any parameter fine-tuning. The accuracy, F1 score, and Kappa on the prediction set are all 100 %, which significantly outperforms the single model, traditional voting method, and stacking method. The culmination of this study suggests that the integration of terahertz time-domain spectroscopy and TOPSIS-Stacking ensemble learning emerges as a promising method for the swift and non-intrusive discrimination of millet geographical origins with remarkable precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Rita发布了新的文献求助10
2秒前
易二三发布了新的文献求助10
2秒前
lee完成签到,获得积分10
3秒前
3秒前
3秒前
卷网那个应助科研通管家采纳,获得10
3秒前
kingwill应助科研通管家采纳,获得20
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
3秒前
Orange应助科研通管家采纳,获得20
3秒前
爆米花应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
qing发布了新的文献求助10
4秒前
5秒前
魏伯安发布了新的文献求助10
8秒前
斯文翠完成签到,获得积分10
8秒前
9秒前
www发布了新的文献求助30
9秒前
10秒前
燕子发布了新的文献求助30
10秒前
RC_Wang应助Kz采纳,获得10
11秒前
在水一方应助Kz采纳,获得10
11秒前
领导范儿应助小猪采纳,获得30
11秒前
小刘恨香菜完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
DT发布了新的文献求助10
16秒前
18秒前
噜lu发布了新的文献求助10
18秒前
19秒前
Suttier完成签到 ,获得积分10
20秒前
255发布了新的文献求助10
22秒前
23秒前
muba完成签到,获得积分10
23秒前
常芹发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479336
求助须知:如何正确求助?哪些是违规求助? 3936825
关于积分的说明 12213102
捐赠科研通 3591524
什么是DOI,文献DOI怎么找? 1975029
邀请新用户注册赠送积分活动 1012172
科研通“疑难数据库(出版商)”最低求助积分说明 905551