Multi-fault diagnosis of rolling mill main drive system based on UIO–DBO–SVM

支持向量机 控制工程 断层(地质) 计算机科学 控制理论(社会学) 工程类 汽车工程 人工智能 控制(管理) 地震学 地质学
作者
Ruicheng Zhang,Hao He,Weizheng Liang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE Publishing]
标识
DOI:10.1177/01423312241273784
摘要

In this paper, the fault diagnosis problem of the main drive system of rolling mill with multiple faults occurring at the same time is studied. Considering the internal equivalent current loop and nonlinear friction damping, the nonlinear mathematical model of the main drive system of rolling mill is established. A new fault diagnosis solution based on model residual and data classifier is proposed to solve the problem of complex fault in this system. In the first stage, the unknown input observer (UIO) is designed for system fault detection. The observer design of the system using the [Formula: see text] index will ensure the robustness of fault diagnosis. Lyapunov theory and linear matrix inequality are introduced to prove the convergence of the proposed observer. In the second stage, each set of coupled residual signals generated by the observer is treated as a separate subsequence and modeled and classified directly using a knowledge support vector machine (SVM). Aiming at the nonlinear separability and complexity of residual data set, dung beetle optimization (DBO) algorithm was used to optimize SVM model parameters. The numerical simulation results of 2030-mm cold rolling mill show that the UIO method can rapidly track the system at a speed of 0.2 seconds, the error of motor angular velocity estimation is 0.33% less than that of the extended state observer, and it is more robust. At the same time, the proposed DBO-SVM is compared with SVM, particle swarm optimization (PSO) algorithm-SVM, and jumping spider optimization algorithm (JSOA)-SVM, and the classification accuracy of the proposed DBO-SVM is 99.86%. This scheme not only provides a solution for the detection and classification of complex faults in the main drive of rolling mill, but also provides a new idea for the fault diagnosis of other complex mechanical equipment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AZN完成签到,获得积分10
刚刚
沙里飞完成签到 ,获得积分10
刚刚
阿宅完成签到 ,获得积分10
刚刚
机灵柚子应助xiao采纳,获得10
刚刚
世外完成签到,获得积分10
刚刚
小马甲应助活着采纳,获得10
1秒前
1秒前
刘果发布了新的文献求助10
1秒前
jia发布了新的文献求助10
2秒前
xu完成签到,获得积分10
3秒前
two完成签到,获得积分10
4秒前
奶茶发布了新的文献求助10
5秒前
端庄的心情完成签到 ,获得积分10
6秒前
ni发布了新的文献求助10
7秒前
华仔应助典雅的雁枫采纳,获得10
8秒前
左孤容完成签到 ,获得积分10
9秒前
零玖完成签到 ,获得积分10
9秒前
嘟嘟完成签到 ,获得积分10
10秒前
zxy完成签到,获得积分10
13秒前
14秒前
15秒前
Bazinga完成签到,获得积分10
15秒前
香蕉觅云应助ni采纳,获得10
15秒前
hhan完成签到,获得积分10
17秒前
zx完成签到 ,获得积分10
17秒前
活着发布了新的文献求助10
18秒前
19秒前
伍六柒发布了新的文献求助10
21秒前
ni完成签到,获得积分20
22秒前
22秒前
可玩性完成签到 ,获得积分10
23秒前
感动的紊完成签到 ,获得积分10
24秒前
25秒前
orixero应助忧郁的猕猴桃采纳,获得10
25秒前
Ywffffff完成签到 ,获得积分10
25秒前
蒋灵馨完成签到 ,获得积分10
29秒前
蒲公英完成签到 ,获得积分10
29秒前
29秒前
hotcas完成签到,获得积分10
30秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801112
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330165
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807519
科研通“疑难数据库(出版商)”最低求助积分说明 763726