Explicit Incorporation of Spatial Autocorrelation in 3D Deep Learning for Geospatial Object Detection

地理空间分析 空间分析 计算机科学 人工智能 空间语境意识 深度学习 目标检测 背景(考古学) 对象(语法) 空间关系 数据科学 机器学习 数据挖掘 地理 模式识别(心理学) 地图学 遥感 考古
作者
Tianyang Chen,Wenwu Tang,Craig Allan,Shen-En Chen
出处
期刊:Annals of the American Association of Geographers [Taylor & Francis]
卷期号:114 (10): 2297-2316 被引量:1
标识
DOI:10.1080/24694452.2024.2380898
摘要

Three-dimensional (3D) geospatial object detection has become essential for 3D geospatial studies driven by explosive growth in 3D data. It is extremely labor- and cost-intensive, though, as it often requires manual detection. Deep learning has been recently used to automate object detection within 3D context. Yet, addressing spatial dependency in 3D data and how it might inform deep learning for 3D geospatial object detection remains a significant challenge. Traditional models focus on the use of spatial properties, often overlooking color and contextual information. Exploiting these nonspatial attributes for 3D geospatial object detection thus becomes crucial. Our study pioneers explicit incorporation of spatial autocorrelation of color information into 3D deep learning for object detection. We introduce an innovative framework to estimate spatial autocorrelation, addressing challenges in unstructured 3D data sets. Our experiments suggest the effectiveness of incorporating spatial autocorrelation features in enhancing the accuracy of 3D deep learning models for geospatial object detection. We further investigate the uncertainty of such contextual information brought by diverse configurations, exemplified by the number of nearest neighbors. This study advances 3D geospatial object detection via using spatial autocorrelation to inform deep learning algorithms, strengthening the connection between GIScience and artificial intelligence and, thus, holding implications for diverse GeoAI applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1123发布了新的文献求助10
3秒前
4秒前
生动之云发布了新的文献求助30
4秒前
Yyyyyyyyy发布了新的文献求助10
4秒前
AUBECHU应助遇晴采纳,获得10
4秒前
5秒前
Jeriu发布了新的文献求助10
5秒前
8秒前
心想事成完成签到,获得积分10
8秒前
Chen2436发布了新的文献求助10
9秒前
Jeriu完成签到,获得积分10
10秒前
善学以致用应助zsn采纳,获得10
11秒前
阿航发布了新的文献求助10
11秒前
ooo娜完成签到,获得积分20
12秒前
12秒前
12秒前
善学以致用应助禹无极采纳,获得10
12秒前
所所应助葛蓉采纳,获得10
12秒前
keke完成签到,获得积分10
13秒前
lsn完成签到,获得积分10
14秒前
共享精神应助傲娇的觅翠采纳,获得10
15秒前
小蘑菇应助123采纳,获得10
17秒前
17秒前
曦阳完成签到,获得积分10
17秒前
深情的若翠完成签到,获得积分10
21秒前
淡晴完成签到,获得积分10
21秒前
执着雨泽完成签到,获得积分10
22秒前
我是老大应助1234采纳,获得10
22秒前
keyanxiaoyan发布了新的文献求助10
23秒前
23秒前
27秒前
lyw关闭了lyw文献求助
28秒前
四万万完成签到,获得积分20
28秒前
jiaying发布了新的文献求助10
28秒前
1123完成签到,获得积分10
30秒前
许多年以后完成签到,获得积分10
31秒前
32秒前
夏果发布了新的文献求助10
33秒前
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942782
求助须知:如何正确求助?哪些是违规求助? 3487919
关于积分的说明 11045968
捐赠科研通 3218443
什么是DOI,文献DOI怎么找? 1778949
邀请新用户注册赠送积分活动 864482
科研通“疑难数据库(出版商)”最低求助积分说明 799542