Comprehensive Potential of Artificial Intelligence for Predicting PD-L1 Expression and EGFR Mutations in Lung Cancer: A Systematic Review and Meta-Analysis

医学 荟萃分析 肺癌 置信区间 肿瘤科 内科学 表皮生长因子受体 免疫组织化学 系统回顾 病理 癌症 核医学 梅德林 政治学 法学
作者
Linyong Wu,Dayou Wei,Wubiao Chen,Chaojun Wu,Zhendong Lu,Songhua Li,Wenci Liu
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/rct.0000000000001644
摘要

Objective To evaluate the methodological quality and the predictive performance of artificial intelligence (AI) for predicting programmed death ligand 1 (PD-L1) expression and epidermal growth factor receptors (EGFR) mutations in lung cancer (LC) based on systematic review and meta-analysis. Methods AI studies based on PET/CT, CT, PET, and immunohistochemistry (IHC)–whole-slide image (WSI) were included to predict PD-L1 expression or EGFR mutations in LC. The modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool was used to evaluate the methodological quality. A comprehensive meta-analysis was conducted to analyze the overall area under the curve (AUC). The Cochrane diagnostic test and I 2 statistics were used to assess the heterogeneity of the meta-analysis. Results A total of 45 AI studies were included, of which 10 were used to predict PD-L1 expression and 35 were used to predict EGFR mutations. Based on the analysis using the QUADAS-2 tool, 37 studies achieved a high-quality score of 7. In the meta-analysis of PD-L1 expression levels, the overall AUCs for PET/CT, CT, and IHC-WSI were 0.80 (95% confidence interval [CI], 0.77–0.84), 0.74 (95% CI, 0.69–0.77), and 0.95 (95% CI, 0.93–0.97), respectively. For EGFR mutation status, the overall AUCs for PET/CT, CT, and PET were 0.85 (95% CI, 0.81–0.88), 0.83 (95% CI, 0.80–0.86), and 0.75 (95% CI, 0.71–0.79), respectively. The Cochrane Diagnostic Test revealed an I 2 value exceeding 50%, indicating substantial heterogeneity in the PD-L1 and EGFR meta-analyses. When AI was combined with clinicopathological features, the enhancement in predicting PD-L1 expression was not substantial, whereas the prediction of EGFR mutations showed improvement compared to the CT and PET models, albeit not significantly so compared to the PET/CT models. Conclusions The overall performance of AI in predicting PD-L1 expression and EGFR mutations in LC has promising clinical implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa发布了新的文献求助30
2秒前
2秒前
七七完成签到,获得积分10
2秒前
Ava应助蛋蛋挞挞采纳,获得10
2秒前
2秒前
科目三应助调皮雨灵采纳,获得10
3秒前
脑洞疼应助wst采纳,获得10
3秒前
Luochenxi发布了新的文献求助10
4秒前
keanu发布了新的文献求助10
4秒前
4秒前
张张发布了新的文献求助10
5秒前
坦率以莲发布了新的文献求助10
5秒前
5秒前
whisper发布了新的文献求助10
5秒前
勇敢小羊完成签到 ,获得积分10
7秒前
7秒前
桐桐应助理想采纳,获得10
7秒前
阿文完成签到 ,获得积分10
8秒前
qingsi完成签到 ,获得积分10
8秒前
yy完成签到 ,获得积分10
8秒前
8秒前
调皮雨灵完成签到,获得积分10
9秒前
谢佳冀完成签到,获得积分20
9秒前
上官若男应助酱酱accept采纳,获得10
9秒前
wst完成签到,获得积分20
9秒前
9秒前
9秒前
李爱国应助师旖旎采纳,获得10
9秒前
万能图书馆应助Mimistree采纳,获得10
10秒前
aa完成签到,获得积分10
10秒前
10秒前
10秒前
lalala发布了新的文献求助10
11秒前
11秒前
Dddd关注了科研通微信公众号
11秒前
wyt完成签到,获得积分10
11秒前
风清扬发布了新的文献求助30
11秒前
12秒前
谢佳冀发布了新的文献求助20
12秒前
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344089
求助须知:如何正确求助?哪些是违规求助? 4479449
关于积分的说明 13942876
捐赠科研通 4376498
什么是DOI,文献DOI怎么找? 2404811
邀请新用户注册赠送积分活动 1397185
关于科研通互助平台的介绍 1369514