清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-driven prediction of tool wear using Bayesian regularized artificial neural networks

人工神经网络 贝叶斯概率 人工智能 计算机科学 深层神经网络 机器学习 数据挖掘 模式识别(心理学)
作者
Tam T. Truong,Jay Airao,Faramarz Hojati,Charlotte F. Ilvig,Bahman Azarhoushang,Panagiotis Karras,Ramin Aghababaei
出处
期刊:Measurement [Elsevier]
卷期号:238: 115303-115303 被引量:39
标识
DOI:10.1016/j.measurement.2024.115303
摘要

The prediction of wear in cutting tools is pivotal for boosting productivity and reducing manufacturing costs. Although current data-driven models in machine learning and deep learning have advanced predictive capabilities, they often lack generality and demand substantial data training. This paper presents a novel approach using Bayesian Regularized Artificial Neural Networks (BRANNs) to precisely forecast wear in milling tools. Unlike conventional machine learning models, BRANNs merge the strengths of artificial neural networks (ANNs) and Bayesian regularization, yielding a more robust and generalized predictive model. We utilized three open-access datasets from the literature alongside an in-house dataset generated by our milling setup. Initially, we assessed the model's predictive ability by training and testing it against individual open-access datasets. We investigated the impact of input features, training data size, hidden units, training algorithms, and transfer functions on the model's predictive capability. Subsequently, we trained the model using three open-access datasets and tested it against our in-house data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
9秒前
14秒前
打打应助孙浚涵采纳,获得10
26秒前
杨天天完成签到 ,获得积分0
34秒前
55秒前
棠臻完成签到 ,获得积分10
1分钟前
sys549发布了新的文献求助10
1分钟前
1分钟前
1分钟前
孙浚涵发布了新的文献求助10
1分钟前
孙浚涵完成签到,获得积分10
1分钟前
jokerhoney完成签到,获得积分0
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得30
2分钟前
2分钟前
2分钟前
活力初蝶发布了新的文献求助10
2分钟前
3分钟前
3分钟前
WLL发布了新的文献求助10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
hhuajw应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755614
求助须知:如何正确求助?哪些是违规求助? 5496992
关于积分的说明 15381359
捐赠科研通 4893584
什么是DOI,文献DOI怎么找? 2632250
邀请新用户注册赠送积分活动 1580121
关于科研通互助平台的介绍 1535968