IV-YOLO: A Lightweight Dual-Branch Object Detection Network

计算机科学 目标检测 人工智能 计算机视觉 深度学习 光学(聚焦) 棱锥(几何) 特征(语言学) 模式识别(心理学) 语言学 哲学 物理 光学
作者
Dan Tian,Xin Yan,Dong Zhou,Chen Wang,Wenshuai Zhang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (19): 6181-6181 被引量:4
标识
DOI:10.3390/s24196181
摘要

With the rapid growth in demand for security surveillance, assisted driving, and remote sensing, object detection networks with robust environmental perception and high detection accuracy have become a research focus. However, single-modality image detection technologies face limitations in environmental adaptability, often affected by factors such as lighting conditions, fog, rain, and obstacles like vegetation, leading to information loss and reduced detection accuracy. We propose an object detection network that integrates features from visible light and infrared images—IV-YOLO—to address these challenges. This network is based on YOLOv8 (You Only Look Once v8) and employs a dual-branch fusion structure that leverages the complementary features of infrared and visible light images for target detection. We designed a Bidirectional Pyramid Feature Fusion structure (Bi-Fusion) to effectively integrate multimodal features, reducing errors from feature redundancy and extracting fine-grained features for small object detection. Additionally, we developed a Shuffle-SPP structure that combines channel and spatial attention to enhance the focus on deep features and extract richer information through upsampling. Regarding model optimization, we designed a loss function tailored for multi-scale object detection, accelerating the convergence speed of the network during training. Compared with the current state-of-the-art Dual-YOLO model, IV-YOLO achieves mAP improvements of 2.8%, 1.1%, and 2.2% on the Drone Vehicle, FLIR, and KAIST datasets, respectively. On the Drone Vehicle and FLIR datasets, IV-YOLO has a parameter count of 4.31 M and achieves a frame rate of 203.2 fps, significantly outperforming YOLOv8n (5.92 M parameters, 188.6 fps on the Drone Vehicle dataset) and YOLO-FIR (7.1 M parameters, 83.3 fps on the FLIR dataset), which had previously achieved the best performance on these datasets. This demonstrates that IV-YOLO achieves higher real-time detection performance while maintaining lower parameter complexity, making it highly promising for applications in autonomous driving, public safety, and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
浮游应助雪落年轮采纳,获得10
刚刚
姜颖完成签到,获得积分10
刚刚
NexusExplorer应助芽芽鸭采纳,获得10
1秒前
霸气的小土豆完成签到 ,获得积分10
2秒前
2秒前
3秒前
ranranran完成签到,获得积分10
4秒前
Luoling完成签到,获得积分10
4秒前
5秒前
Z赵完成签到 ,获得积分10
7秒前
7秒前
KBRS完成签到,获得积分10
7秒前
浮晨完成签到,获得积分10
8秒前
8秒前
8秒前
达达发布了新的文献求助10
8秒前
李新颖完成签到 ,获得积分10
9秒前
萨瓦迪卡发布了新的文献求助10
9秒前
naturehome完成签到,获得积分10
9秒前
淡然篮球发布了新的文献求助10
9秒前
fannnnnn完成签到,获得积分10
10秒前
10秒前
10秒前
小胡发布了新的文献求助10
10秒前
10秒前
BETCHA完成签到,获得积分20
11秒前
nn发布了新的文献求助10
11秒前
不想懂完成签到,获得积分20
11秒前
jasmine完成签到,获得积分10
12秒前
sxy发布了新的文献求助10
12秒前
13秒前
阿布发布了新的文献求助10
13秒前
BETCHA发布了新的文献求助10
13秒前
Mse发布了新的文献求助10
13秒前
15秒前
16秒前
浮游应助LYriQue采纳,获得10
16秒前
顶针烟中电王源完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308864
求助须知:如何正确求助?哪些是违规求助? 4453810
关于积分的说明 13858222
捐赠科研通 4341572
什么是DOI,文献DOI怎么找? 2384004
邀请新用户注册赠送积分活动 1378588
关于科研通互助平台的介绍 1346583