IV-YOLO: A Lightweight Dual-Branch Object Detection Network

计算机科学 目标检测 人工智能 计算机视觉 深度学习 光学(聚焦) 棱锥(几何) 特征(语言学) 模式识别(心理学) 语言学 光学 物理 哲学
作者
Dan Tian,Xin Yan,Dong Zhou,Chen Wang,Wenshuai Zhang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (19): 6181-6181 被引量:4
标识
DOI:10.3390/s24196181
摘要

With the rapid growth in demand for security surveillance, assisted driving, and remote sensing, object detection networks with robust environmental perception and high detection accuracy have become a research focus. However, single-modality image detection technologies face limitations in environmental adaptability, often affected by factors such as lighting conditions, fog, rain, and obstacles like vegetation, leading to information loss and reduced detection accuracy. We propose an object detection network that integrates features from visible light and infrared images—IV-YOLO—to address these challenges. This network is based on YOLOv8 (You Only Look Once v8) and employs a dual-branch fusion structure that leverages the complementary features of infrared and visible light images for target detection. We designed a Bidirectional Pyramid Feature Fusion structure (Bi-Fusion) to effectively integrate multimodal features, reducing errors from feature redundancy and extracting fine-grained features for small object detection. Additionally, we developed a Shuffle-SPP structure that combines channel and spatial attention to enhance the focus on deep features and extract richer information through upsampling. Regarding model optimization, we designed a loss function tailored for multi-scale object detection, accelerating the convergence speed of the network during training. Compared with the current state-of-the-art Dual-YOLO model, IV-YOLO achieves mAP improvements of 2.8%, 1.1%, and 2.2% on the Drone Vehicle, FLIR, and KAIST datasets, respectively. On the Drone Vehicle and FLIR datasets, IV-YOLO has a parameter count of 4.31 M and achieves a frame rate of 203.2 fps, significantly outperforming YOLOv8n (5.92 M parameters, 188.6 fps on the Drone Vehicle dataset) and YOLO-FIR (7.1 M parameters, 83.3 fps on the FLIR dataset), which had previously achieved the best performance on these datasets. This demonstrates that IV-YOLO achieves higher real-time detection performance while maintaining lower parameter complexity, making it highly promising for applications in autonomous driving, public safety, and beyond.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊梦阑珊发布了新的文献求助10
2秒前
标致冰海完成签到 ,获得积分10
3秒前
3秒前
888发布了新的文献求助10
4秒前
SiShi发布了新的文献求助10
4秒前
4秒前
兴奋的小笼包完成签到,获得积分10
4秒前
chenalong发布了新的文献求助10
5秒前
欢城完成签到,获得积分10
6秒前
英俊的铭应助尚焱宇采纳,获得10
7秒前
qqq完成签到,获得积分10
7秒前
8秒前
嘎嘎咻完成签到 ,获得积分10
9秒前
小徐医生发布了新的文献求助10
9秒前
Pendragon发布了新的文献求助10
9秒前
10秒前
Zoo应助CompJIN采纳,获得100
10秒前
楼萌黑发布了新的文献求助10
11秒前
贰陆发布了新的文献求助10
11秒前
Zhaoyt应助沈亮采纳,获得10
12秒前
Jennier完成签到,获得积分10
13秒前
丘比特应助123采纳,获得10
13秒前
16秒前
16秒前
18秒前
吴DrYDYY完成签到 ,获得积分10
18秒前
白菜包子完成签到 ,获得积分10
19秒前
20秒前
平常的凡白完成签到 ,获得积分10
20秒前
21秒前
顾矜应助郑总采纳,获得10
21秒前
Hale完成签到,获得积分0
21秒前
汉堡包应助聪聪聪采纳,获得10
21秒前
jwb711发布了新的文献求助10
22秒前
lgf完成签到,获得积分10
22秒前
Kal完成签到 ,获得积分10
23秒前
123发布了新的文献求助10
25秒前
hou完成签到,获得积分10
26秒前
26秒前
zhenghang完成签到,获得积分10
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Psychology Applied to Teaching 14th Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4085032
求助须知:如何正确求助?哪些是违规求助? 3624130
关于积分的说明 11496180
捐赠科研通 3338317
什么是DOI,文献DOI怎么找? 1835202
邀请新用户注册赠送积分活动 903746
科研通“疑难数据库(出版商)”最低求助积分说明 821956