A panel data regression model for defense merger and acquisition activity

偿付能力 盈利能力指数 面板数据 市场流动性 生产力 业务 价值(数学) 独创性 经济 精算学 财务 货币经济学 计量经济学 宏观经济学 法学 机器学习 计算机科学 政治学 创造力
作者
C. Mack,Clay Koschnick,Michael S. Brown,Jonathan D. Ritschel,Brandon Lucas
出处
期刊:Journal of defense analytics and logistics [Emerald Publishing Limited]
被引量:2
标识
DOI:10.1108/jdal-03-2024-0005
摘要

Purpose This paper examines the relationship between a prime contractor's financial health and its mergers and acquisitions (M&A) spending in the defense industry. It aims to provide models that give the United States Department of Defense (DoD) indications of future M&A activity, informing decision-makers and contributing to ensuring competitive markets that benefit the consumer. Design/methodology/approach The study uses panel data regression models on 40 companies between 1985 and 2021. The company's financial health is assessed using industry-standard financial ratios (i.e. measures of profitability, efficiency, solvency and liquidity) while controlling for economic factors such as national productivity, defense budgets and firm size. Findings The results show a significant relationship between efficiency and M&A spending, indicating that companies with lower efficiency tend to spend more on M&As. However, there was no significant relationship between M&A spending and a company's profitability or solvency. These results were consistent with previous research and the study's hypotheses for profitability and solvency. However, the effect of liquidity was the opposite of the expected result, possibly due to the defense industry's different view on liquidity compared to previous research. Originality/value The paper provides insights into the relationship between a prime contractor's financial health and its M&A spending, a topic with limited research. The findings can inform policymakers and regulators on the industrial base's future M&A activity, ensuring competitive markets that benefit the consumer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
哈哈哈发布了新的文献求助20
3秒前
3秒前
wangyf发布了新的文献求助200
4秒前
4秒前
完美世界应助诚心青曼采纳,获得10
5秒前
6秒前
俏皮的从阳完成签到 ,获得积分10
7秒前
爆米花应助蓬蓬采纳,获得10
7秒前
阿庆完成签到,获得积分10
8秒前
白筠233发布了新的文献求助10
8秒前
14秒前
CodeCraft应助cwb采纳,获得10
14秒前
我是老大应助zjkzh采纳,获得10
15秒前
15秒前
白筠233完成签到,获得积分10
16秒前
BulingQAQ发布了新的文献求助10
16秒前
eryday0完成签到 ,获得积分10
16秒前
明理如冰发布了新的文献求助10
17秒前
xixiz1024发布了新的文献求助10
17秒前
酷波er应助shero采纳,获得10
19秒前
方法发布了新的文献求助10
19秒前
哈哈哈发布了新的文献求助10
19秒前
20秒前
21秒前
小机灵鬼发布了新的文献求助10
23秒前
zjkzh发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
26秒前
Twinkle完成签到,获得积分10
26秒前
cwb发布了新的文献求助10
27秒前
xia完成签到,获得积分10
27秒前
呆萌的莲完成签到,获得积分10
27秒前
沉默的凝云完成签到,获得积分10
29秒前
29秒前
落后寒凡发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
搜集达人应助xc采纳,获得10
30秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864759
求助须知:如何正确求助?哪些是违规求助? 3407235
关于积分的说明 10653081
捐赠科研通 3131206
什么是DOI,文献DOI怎么找? 1726904
邀请新用户注册赠送积分活动 832093
科研通“疑难数据库(出版商)”最低求助积分说明 780124