Deep Learning-Based Label-Free Surface-Enhanced Raman Scattering Screening and Recognition of Small-Molecule Binding Sites in Proteins

化学 小分子 拉曼散射 分子识别 生物物理学 分子 生物化学 拉曼光谱 有机化学 生物 物理 光学
作者
Mei Peng,Zi Wang,Xiaotong Sun,Xiangwei Guo,Haoyang Wang,Ruili Li,Qi Liu,Miao Chen,Xiaoqing Chen
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (33): 11483-11491 被引量:10
标识
DOI:10.1021/acs.analchem.2c01158
摘要

Identification of small-molecule binding sites in proteins is of great significance in analysis of protein function and drug design. Modified sites can be recognized via proteolytic cleavage followed by liquid chromatography-mass spectrometry (LC-MS); however, this has always been impeded by the complexity of peptide mixtures and the elaborate synthetic design for tags. Here, we demonstrate a novel technique for identifying protein binding sites using a deep learning-based label-free surface-enhanced Raman scattering (SERS) screening (DLSS) strategy. In DLSS, the deep learning model that was trained with large SERS signals could detect signal features of small molecules with high accuracy (>99%). Without any secondary tag, the small molecules are directly complexed with proteins. After proteolysis and LC, SERS signals of all LC fractions are collected and input into the model, whereby the fractions containing the small-molecule-modified peptides can be recognized by the model and sent to MS/MS to identify the binding site(s). By using an automated DLSS system, we successfully identified the modification sites of fomepizole in alcohol dehydrogenase, which is coordinated with zinc along with three peptides. We also showed that the DLSS strategy works for identification of amino-acid residues that covalently bond with ibrutinib in Bruton tyrosine kinase. These results suggest that the DLSS strategy, which provides high molecular recognition capability to LC-MS analysis, has potential in drug discovery, proteomics, and metabolomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸟儿不唱歌完成签到,获得积分10
刚刚
111发布了新的文献求助20
1秒前
1秒前
1秒前
轻松尔蝶完成签到 ,获得积分10
1秒前
浮游应助李lll采纳,获得10
2秒前
花花发布了新的文献求助20
2秒前
深情安青应助五六七采纳,获得10
2秒前
stan发布了新的文献求助10
2秒前
Free发布了新的文献求助10
2秒前
2秒前
兴奋尔竹完成签到,获得积分10
3秒前
jiamei_wen应助孙廷宇采纳,获得10
3秒前
刘龙完成签到,获得积分10
3秒前
4秒前
木香完成签到,获得积分10
4秒前
李文莹完成签到,获得积分10
4秒前
5秒前
无花果应助威武飞双采纳,获得10
5秒前
脆筒关注了科研通微信公众号
5秒前
7秒前
李lll完成签到,获得积分20
7秒前
yyyyyggggg发布了新的文献求助10
7秒前
原子格致完成签到,获得积分10
7秒前
shine发布了新的文献求助10
8秒前
L14完成签到 ,获得积分10
8秒前
hiio发布了新的文献求助10
8秒前
8秒前
8秒前
Bo0108完成签到,获得积分10
9秒前
熊大完成签到,获得积分10
10秒前
10秒前
李李李娟完成签到,获得积分20
10秒前
10秒前
sunyanghu369发布了新的文献求助10
12秒前
12秒前
aa发布了新的文献求助10
13秒前
柏林寒冬应助杨汝颢采纳,获得10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396892
求助须知:如何正确求助?哪些是违规求助? 4517252
关于积分的说明 14062680
捐赠科研通 4429000
什么是DOI,文献DOI怎么找? 2432179
邀请新用户注册赠送积分活动 1424688
关于科研通互助平台的介绍 1403672