亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fast and accurate detection of metal resistance genes using MetHMMDb

抗性(生态学) 基因 计算机科学 计算生物学 遗传学 生物 生态学
作者
Karol Ciuchciński,Mikołaj Dziurzyński
标识
DOI:10.1101/2024.12.26.629440
摘要

Heavy metal pollution, driven by industrialization, is a growing environmental challenge with severe ecological impacts. One of key factors in fighting this issue is microbial resistance to heavy metals, and its potential for use in bioremediation and environmental monitoring. Unfortunately, existing detection methods often fail to identify distant homologs or to provide insight into the function of microbial metal resistance genes (MMRGs). To overcome these limitations, we developed MetHMMDB - a novel database containing 254 profile Hidden Markov Models (HMMs) representing 121 microbial MMRGs and functions. Unlike traditional sequence similarity-based tools, MetHMMDB leverages HMMs to enhance detection sensitivity and functional specificity across diverse microbial communities. MetHMMDB was created through iterative database searches, combined with sequence clustering and structural prediction, combining both recent advances in bioinformatics and manal curation of data. In its core, the database prioritises functional annotation, ensuring accurate detection and classification of genes responsible for metal resistance. Our results indicate that MetHMMDB outperforms sequence-based approaches, identifying more than twice as many MMRGs in metagenomic datasets, including extreme environments. Additionally, application to agricultural soil revealed distinct resistance profiles linked to soil quality. By improving the identification and functional characterization of metal resistance genes, MetHMMDB facilitates interdisciplinary research in microbial ecology, environmental monitoring, and bioremediation. This robust and versatile resource represents a significant advancement in understanding microbial adaptation to heavy metal contamination and supports the development of effective environmental management strategies. The database is available at https://github.com/Haelmorn/MetHMMDB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
遥感小虫发布了新的文献求助10
9秒前
可爱多发布了新的文献求助10
11秒前
TXZ06完成签到,获得积分10
12秒前
13秒前
英勇的凌蝶完成签到,获得积分10
14秒前
可爱多完成签到,获得积分10
19秒前
21秒前
活力的访梦完成签到,获得积分10
22秒前
23秒前
酷猫发布了新的文献求助10
25秒前
小螃蟹发布了新的文献求助10
28秒前
无产阶级科学者完成签到,获得积分10
29秒前
Wei完成签到,获得积分10
43秒前
乐乐应助英勇的凌蝶采纳,获得10
45秒前
席江海完成签到,获得积分10
45秒前
123123完成签到 ,获得积分10
47秒前
拉长的冷霜完成签到 ,获得积分10
47秒前
123完成签到 ,获得积分10
54秒前
1分钟前
1分钟前
1分钟前
所所应助piaopiao2021采纳,获得10
1分钟前
1分钟前
1分钟前
zl发布了新的文献求助10
1分钟前
1分钟前
桐桐应助悦耳的黑米采纳,获得10
1分钟前
want_top_journal完成签到,获得积分10
2分钟前
正直的鸿完成签到,获得积分10
2分钟前
2分钟前
水水水完成签到 ,获得积分10
2分钟前
aaa完成签到,获得积分10
2分钟前
MYunn完成签到,获得积分0
2分钟前
2分钟前
HEIKU应助GM采纳,获得10
2分钟前
丿夜幕灬降临丨完成签到,获得积分10
2分钟前
GM完成签到,获得积分10
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Narcissistic Personality Disorder 700
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857242
求助须知:如何正确求助?哪些是违规求助? 3399671
关于积分的说明 10613267
捐赠科研通 3121949
什么是DOI,文献DOI怎么找? 1721067
邀请新用户注册赠送积分活动 828895
科研通“疑难数据库(出版商)”最低求助积分说明 777891