Online tensile strength prediction considering geometric and physical characteristics during FSW 2219-T8 aluminum alloy plate

搅拌摩擦焊 极限抗拉强度 焊接 材料科学 粒子群优化 合金 对接接头 复合材料 冶金 计算机科学 算法
作者
Xiaohong Lü,Banghua Yang,Ying Chen,C. Pan
出处
标识
DOI:10.1177/09544062241303383
摘要

Tensile strength of joints of friction stir welded (FSW) thick 2219-T8 aluminum alloy plates, is affected by multiple geometric and physical characteristics, such as axial force, welding temperature, gap, and mismatch of the butt face, which makes it difficult to predict the tensile strength with high precision on line. At present, simple welding process prediction based on temperature or force is difficult to achieve accurate control of complex welding process. In this paper, a multi-information fused one-dimensional Convolutional Neural Network (1DCNN), combining geometric and physical characteristics of welding process, was proposed to predict the tensile strength of joints. Firstly, the experiments of FSW thick 2219-T8 aluminum alloy plates were conducted and the axial force, welding temperature, gap and mismatch of the butt face are measured. Then, the measured multi-source data was fused through down-sampling technology. Before training, the Particle Swarm Optimization (PSO) and Long Short-Term Memory (LSTM) were adopted to optimize the initial learning rate and layer structure of the model. The experiment results showed that the proposed model can accurately and quickly predict the tensile strength of thick 2219-T8 aluminum alloy joints with the mean absolute percentage error less than 2%. In addition, metallographic analysis revealed that the joint tensile strength is interlocked with weld defects and fine grain strengthening. The research lays a foundation for welding quality control of FSW.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
123456789发布了新的文献求助10
刚刚
刚刚
1秒前
科研通AI6应助cqyc007采纳,获得10
2秒前
1111发布了新的文献求助10
2秒前
我爱科研发布了新的文献求助20
3秒前
111发布了新的文献求助50
4秒前
5秒前
幸运兔发布了新的文献求助10
5秒前
6秒前
6秒前
端庄的罗发布了新的文献求助10
7秒前
Camellia发布了新的文献求助10
10秒前
上官若男应助幸运兔采纳,获得10
10秒前
梁小鑫完成签到,获得积分10
11秒前
11秒前
丘比特应助忐忑的蛋糕采纳,获得10
11秒前
满月寂照发布了新的文献求助10
13秒前
15秒前
子车茗应助luan采纳,获得20
16秒前
852应助等风来采纳,获得30
16秒前
XXX完成签到 ,获得积分10
16秒前
16秒前
17秒前
ymh发布了新的文献求助10
17秒前
18秒前
rainbow发布了新的文献求助10
18秒前
adeno发布了新的文献求助20
19秒前
怡然的兔子完成签到 ,获得积分10
20秒前
21秒前
小冯完成签到,获得积分10
22秒前
23秒前
25秒前
个性尔槐完成签到,获得积分10
25秒前
哈基米应助qq158014169采纳,获得20
26秒前
科研通AI6应助在河之洲采纳,获得10
27秒前
地理牛马发布了新的文献求助10
27秒前
含蓄以云发布了新的文献求助10
28秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496844
求助须知:如何正确求助?哪些是违规求助? 4594452
关于积分的说明 14444825
捐赠科研通 4526995
什么是DOI,文献DOI怎么找? 2480606
邀请新用户注册赠送积分活动 1465047
关于科研通互助平台的介绍 1437782