Bearing fault diagnosis based on sparsity structure pruning graph attention network

修剪 模式识别(心理学) 人工智能 方位(导航) 图形 计算机科学 断层(地质) 理论计算机科学 地质学 生物 地震学 植物
作者
Chenye Zhang,Hui Shi,Renwang Song,Chengjun Yao,Linying Chen
出处
期刊:Engineering research express [IOP Publishing]
卷期号:6 (4): 045244-045244 被引量:1
标识
DOI:10.1088/2631-8695/ad907b
摘要

Abstract Graph neural networks have been widely used in the field of bearing fault diagnosis, which can deal with non-Euclidean space data and dig deep the relationship between signals. However, most graph neural networks do not distinguish the importance of nodes in information aggregation, and do not take edge noise and data redundancy into account when constructing the graph structure, which affects the diagnostic accuracy. To solve these problems, a fault diagnosis method of graph attention network based on sparsity structure pruning is proposed. Firstly, a sparsity coefficient is introduced to construct the graph structure, and pruning operations are carried out according to the coefficient and the weight of the edges to avoid invalid fusion of information. Then, a graph attention network model based on sparsity structure pruning is constructed, and features of different scales are aggregated into new node representations through multi-head attention mechanism. Finally, the fault diagnosis of bearing is carried out according to the extracted signal discrimination characteristics. To verify the effectiveness of the proposed method, experiments are performed on two different fault diagnosis datasets and compared with other graph neural network methods. The results show that the accuracy and stability of the proposed method are superior to other methods even under the condition of low signal to noise ratio (SNR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
idannn应助科研通管家采纳,获得10
刚刚
刚刚
idannn应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
刚刚
禾0709完成签到 ,获得积分10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
孔问筠完成签到,获得积分0
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
乐观小之应助科研通管家采纳,获得10
1秒前
乐观小之应助科研通管家采纳,获得10
1秒前
1111应助科研通管家采纳,获得10
1秒前
恋如雪止应助科研通管家采纳,获得10
1秒前
1111应助科研通管家采纳,获得10
1秒前
1秒前
恋如雪止应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027