SynthCAT: Synthesizing Cellular Association Traces with Fusion of Model-Based and Data-Driven Approaches

数据关联 联想(心理学) 融合 计算机科学 传感器融合 人工智能 心理学 心理治疗师 哲学 语言学 概率逻辑
作者
Feng Lyu,Jie Zhang,Huali Lu,Huaqing Wu,Fan Wu,Yongmin Zhang,Yaoxue Zhang
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:8 (4): 1-24
标识
DOI:10.1145/3699730
摘要

The scarcity of publicly available cellular association traces hinders user location-based research and various data-driven services, highlighting the importance of data synthesis in this field. In this paper, we investigate the cellular association trace synthesis (CATS) problem, aiming to generate diverse and realistic cellular association traces based on road segment-based trajectories and corresponding departure times. To substantiate our research, we first gather substantial data, including road segment-based trajectories, base station (BS) distribution, and ground truths of cellular association traces. We then perform systematic data analysis to reveal technical challenges such as disparity in geographic spaces, complex and dynamic BS handover, and poor performance of single-dimension approaches. To address these challenges, we propose SynthCAT, a novel scheme that fuses model-based and data-driven approaches. Specifically, SynthCAT includes: i) A model-based coarse-grained cellular association trace generation component, encompassing GPS reference generation, weighted historical average time generation, Bayesian decision, and time mapping modules. This component establishes a unified GPS space to map road and BS spaces, generates initial time information, synthesizes coarse-grained spatial cellular association traces by following explicit BS handover rules, and maps the corresponding arrival time for each trace point; ii) A fine-grained cellular association trace generation component, which combines model-based and data-driven approaches. This employs a two-stage Autoencoder Generative Adversarial Network (AEGAN) to refine cellular association traces based on the coarse-grained ones. Extensive field experiments validate the efficacy of SynthCAT in terms of trace similarity to ground truths and its efficiency in supporting practical downstream applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
战战兢兢的失眠完成签到 ,获得积分10
1秒前
小烟囱完成签到 ,获得积分10
1秒前
JJJ完成签到,获得积分10
5秒前
badgerwithfisher完成签到,获得积分10
8秒前
某某完成签到 ,获得积分10
8秒前
胡图图完成签到 ,获得积分10
11秒前
大好人完成签到 ,获得积分10
12秒前
15秒前
21秒前
笨笨完成签到 ,获得积分10
24秒前
养花低手完成签到 ,获得积分10
24秒前
小燕子完成签到 ,获得积分0
25秒前
精明世倌完成签到 ,获得积分10
27秒前
从心随缘完成签到 ,获得积分10
29秒前
nenoaowu应助JJJ采纳,获得30
42秒前
丘比特应助科研通管家采纳,获得150
46秒前
liujunhong完成签到,获得积分10
47秒前
安安最可爱完成签到 ,获得积分10
47秒前
水晶李完成签到 ,获得积分10
47秒前
崔灿完成签到 ,获得积分10
49秒前
文献搬运工完成签到 ,获得积分10
53秒前
崩溃完成签到,获得积分10
56秒前
左丘映易完成签到,获得积分0
57秒前
快乐的冰岚完成签到,获得积分10
57秒前
我是老大应助武雨寒采纳,获得10
59秒前
1分钟前
张平一完成签到 ,获得积分10
1分钟前
1分钟前
微解感染完成签到,获得积分10
1分钟前
哥哥完成签到,获得积分10
1分钟前
武雨寒发布了新的文献求助10
1分钟前
小果完成签到 ,获得积分10
1分钟前
Java完成签到,获得积分10
1分钟前
Leo完成签到 ,获得积分10
1分钟前
Physio发布了新的文献求助10
1分钟前
zhao完成签到,获得积分10
1分钟前
完美世界应助w_donghui采纳,获得10
1分钟前
yunt完成签到 ,获得积分10
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5174781
求助须知:如何正确求助?哪些是违规求助? 4364149
关于积分的说明 13586199
捐赠科研通 4213001
什么是DOI,文献DOI怎么找? 2310896
邀请新用户注册赠送积分活动 1309835
关于科研通互助平台的介绍 1257644