亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation of an enhanced ResNet-18 classification model for rapid On-site diagnosis in respiratory cytology

医学 医学诊断 细胞学 细胞病理学 放射科 外科肿瘤学 肺癌 病理 经济短缺 癌症 肿瘤科 内科学 语言学 哲学 政府(语言学)
作者
Wei Gong,Deep K. Vaishnani,X Jin,Jing Zeng,Wei Chen,Hui Huang,Yuqing Zhou,Khaing Wut Yi Hla,Geng Chen,Jun Ma
出处
期刊:BMC Cancer [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12885-024-13402-3
摘要

Abstract Objective Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value. Methods Retrospectively, 116 digital images of Diff-Quik stained cytology samples were obtained from whole slide scans. These included 6 diagnostic categories - carcinoid, normal cells, adenocarcinoma, squamous cell carcinoma, non-small cell carcinoma, and small cell carcinoma. All malignant diagnoses were confirmed by histopathology and immunohistochemistry. The test image set was presented to 3 cytopathologists from different hospitals with varying levels of experience, as well as an artificial intelligence system, as single-choice questions. Results The diagnostic accuracy of the cytopathologists correlated with their years of practice and hospital setting. The AI model demonstrated proficiency comparable to the humans. Importantly, all combinations of AI assistance and human cytopathologist increased diagnostic efficiency to varying degrees. Conclusions This deep learning model shows promising capability as an aid for on-site diagnosis of respiratory cytology samples. However, human expertise remains essential to the diagnostic process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助long采纳,获得10
4秒前
JamesPei应助小白果果采纳,获得10
5秒前
文静的翠彤完成签到 ,获得积分10
6秒前
wyh发布了新的文献求助10
8秒前
qiuqiu应助tracer526采纳,获得10
10秒前
22秒前
22秒前
Murphy完成签到 ,获得积分10
23秒前
李健应助Krismile采纳,获得10
25秒前
仰勒完成签到 ,获得积分10
27秒前
小白果果发布了新的文献求助10
27秒前
小九关注了科研通微信公众号
36秒前
且慢应助LaffiteElla采纳,获得20
40秒前
50秒前
张紫豹完成签到,获得积分20
52秒前
量子星尘发布了新的文献求助10
54秒前
555发布了新的文献求助30
56秒前
研友_VZG7GZ应助张紫豹采纳,获得20
56秒前
57秒前
1分钟前
wyh完成签到,获得积分10
1分钟前
555完成签到,获得积分10
1分钟前
小二郎应助YU采纳,获得10
1分钟前
1分钟前
渟柠完成签到 ,获得积分10
1分钟前
yu发布了新的文献求助10
1分钟前
1分钟前
Akim应助芋泥采纳,获得10
1分钟前
小钥匙完成签到 ,获得积分10
1分钟前
小马甲应助小白果果采纳,获得10
1分钟前
1分钟前
yu完成签到,获得积分20
1分钟前
动听的雨完成签到,获得积分10
1分钟前
111发布了新的文献求助10
1分钟前
Fayeah完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
nihao完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488409
求助须知:如何正确求助?哪些是违规求助? 4587292
关于积分的说明 14413420
捐赠科研通 4518572
什么是DOI,文献DOI怎么找? 2475929
邀请新用户注册赠送积分活动 1461433
关于科研通互助平台的介绍 1434333