Evaluation of an enhanced ResNet-18 classification model for rapid On-site diagnosis in respiratory cytology

医学 医学诊断 细胞学 细胞病理学 放射科 外科肿瘤学 肺癌 病理 经济短缺 癌症 肿瘤科 内科学 语言学 哲学 政府(语言学)
作者
Wei Gong,Deep K. Vaishnani,X Jin,Jing Zeng,Wei Chen,Hui Huang,Yuqing Zhou,Khaing Wut Yi Hla,Geng Chen,Jun Ma
出处
期刊:BMC Cancer [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12885-024-13402-3
摘要

Abstract Objective Rapid on-site evaluation (ROSE) of respiratory cytology specimens is a critical technique for accurate and timely diagnosis of lung cancer. However, in China, limited familiarity with the Diff-Quik staining method and a shortage of trained cytopathologists hamper utilization of ROSE. Therefore, developing an improved deep learning model to assist clinicians in promptly and accurately evaluating Diff-Quik stained cytology samples during ROSE has important clinical value. Methods Retrospectively, 116 digital images of Diff-Quik stained cytology samples were obtained from whole slide scans. These included 6 diagnostic categories - carcinoid, normal cells, adenocarcinoma, squamous cell carcinoma, non-small cell carcinoma, and small cell carcinoma. All malignant diagnoses were confirmed by histopathology and immunohistochemistry. The test image set was presented to 3 cytopathologists from different hospitals with varying levels of experience, as well as an artificial intelligence system, as single-choice questions. Results The diagnostic accuracy of the cytopathologists correlated with their years of practice and hospital setting. The AI model demonstrated proficiency comparable to the humans. Importantly, all combinations of AI assistance and human cytopathologist increased diagnostic efficiency to varying degrees. Conclusions This deep learning model shows promising capability as an aid for on-site diagnosis of respiratory cytology samples. However, human expertise remains essential to the diagnostic process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝色发布了新的文献求助10
1秒前
威武的大树完成签到,获得积分10
1秒前
2秒前
米共完成签到 ,获得积分10
3秒前
7秒前
7秒前
10秒前
杰克完成签到,获得积分10
11秒前
蓝色发布了新的文献求助10
12秒前
学不完了发布了新的文献求助10
13秒前
跳跃的世开完成签到,获得积分10
13秒前
Byron完成签到,获得积分10
13秒前
cdercder应助宝宝言兼采纳,获得10
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
cdercder应助科研通管家采纳,获得10
18秒前
打打应助科研通管家采纳,获得10
18秒前
李健应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
19秒前
蓝色发布了新的文献求助10
21秒前
郭达仲完成签到 ,获得积分10
21秒前
十七完成签到 ,获得积分10
22秒前
斯文远望完成签到,获得积分10
29秒前
myqj发布了新的文献求助10
29秒前
123456hhh完成签到,获得积分10
30秒前
30秒前
科研通AI5应助彩色草莓采纳,获得10
31秒前
31秒前
怡然小蚂蚁完成签到 ,获得积分10
32秒前
32秒前
周LL发布了新的文献求助10
35秒前
李爱国应助刘璇采纳,获得10
36秒前
zl完成签到,获得积分10
36秒前
38秒前
2041完成签到,获得积分10
40秒前
淡然宛凝完成签到 ,获得积分10
41秒前
噔噔蹬完成签到 ,获得积分10
42秒前
shenghaowen完成签到,获得积分10
43秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799143
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321712
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680119
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445