Fast processing and classification of epileptic seizures based on compressed EEG signals

脑电图 癫痫 计算机科学 模式识别(心理学) 癫痫发作 人工智能 神经科学 心理学
作者
Achraf Djemal,Ahmed Yahia Kallel,Cherif Ouni,Rihem El Baccouch,Dhouha Bouchaala,Fatma Kammoun Feki,Chahnez Triki,Ahmed Fakhfakh,Olfa Kanoun
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:184: 109346-109346
标识
DOI:10.1016/j.compbiomed.2024.109346
摘要

The diagnosis of epilepsy based on visual inspection of electroencephalogram (EEG) signals is inherently complex and prone to error, even for physicians, mainly due to the large number of signals involved and the variability between individuals. These same challenges make the development of portable epilepsy diagnostic systems for everyday use difficult. Key obstacles include the immense complexity of signal processing and the inherent ambiguity in accurately classifying disease. For these reasons, we propose in this paper the deployment of compressive sensing to condense EEG signals while preserving relevant information, allowing seizure classification based on systematically selected features of the reconstructed signals. Based on a dataset comprising EEG recordings from 13 epileptic patients with various seizure types, we explore the deployment of the discrete cosine transform (DCT) and random matrix multiplication for compression ratios ranging from 5% to 70%, balancing data reduction with signal fidelity. Following the extraction of relevant features, selection was performed based on mutual information and a correlation matrix to preserve only the most relevant features for analysis. For classification, following a comparison of adequate machine learning models, XGBoost is chosen as it realizes a classification accuracy of 98.78%. The CS method was implemented on an STM32 microcontroller and a Raspberry Pi for reconstruction and classification, to demonstrate feasibility as an embedded system. At 70% compression, significant improvements have been observed: 70% file size reduction, 84% decrease in transmission time (from 2518.532s to 400.392s), and substantial energy savings (e.g., from 11.5±0.707 mWh to 4.5±0.707 mWh for Patient 12). Thereby, the signal quality was maintained with PSNR of 16.15±3.98 and Pearson correlation coefficient of 0.68±0.15. The proposed system highlights the potential for efficient, portable, real-time epilepsy diagnosis systems that achieve precise and fully automated seizure classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cherry发布了新的文献求助10
2秒前
4秒前
苗条曲奇完成签到,获得积分10
6秒前
星辰大海应助失眠小猫咪采纳,获得10
6秒前
Carlos完成签到,获得积分20
6秒前
7秒前
Carlos发布了新的文献求助30
8秒前
小小蚂蚁完成签到,获得积分10
9秒前
zhaolei完成签到 ,获得积分10
12秒前
Green发布了新的文献求助10
13秒前
13秒前
13秒前
由哎完成签到,获得积分10
13秒前
为什么完成签到,获得积分10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得30
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
bkagyin应助ycd采纳,获得10
16秒前
科研通AI5应助搞怪不言采纳,获得10
18秒前
欣欣杨完成签到,获得积分20
19秒前
19秒前
wanci应助cherry采纳,获得10
20秒前
Zqq发布了新的文献求助10
20秒前
20秒前
铁臂阿童木完成签到,获得积分10
20秒前
21秒前
Melody发布了新的文献求助10
22秒前
要减肥含灵完成签到,获得积分10
23秒前
白日焰火完成签到 ,获得积分10
24秒前
25秒前
25秒前
26秒前
pcr163应助pp63采纳,获得100
28秒前
木同人发布了新的文献求助10
28秒前
wmm发布了新的文献求助10
29秒前
搞怪不言发布了新的文献求助10
30秒前
30秒前
31秒前
思量博千金完成签到,获得积分10
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805370
求助须知:如何正确求助?哪些是违规求助? 3350335
关于积分的说明 10348557
捐赠科研通 3066264
什么是DOI,文献DOI怎么找? 1683641
邀请新用户注册赠送积分活动 809105
科研通“疑难数据库(出版商)”最低求助积分说明 765243