亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics and deep learning features of pericoronary adipose tissue on non-contrast computerized tomography for predicting non-calcified plaques

无线电技术 对比度(视觉) 人工智能 脂肪组织 计算机科学 医学 放射科 内科学
作者
Junli Yu,Yan Ding,Li Wang,Shunxin Hu,Ning Dong,J. Sheng,Yaoqiang Ren,Ziyue Wang
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
标识
DOI:10.1177/08953996241292476
摘要

Background Inflammation of coronary arterial plaque is considered a key factor in the development of coronary heart disease. Early the plaque detection and timely treatment of the atherosclerosis could effectively reduce the risk of cardiovascular events. However, there is no study combining radiomics with deep learning techniques to predict non-calcified plaques (NCP) in coronary artery at present. Objective To investigate the value of combination of radiomics and deep learning features based on non-contrast computerized tomography (CT) scans of pericoronary adipose tissue (PCAT), integrating with clinical risk factors of patients, in identifying coronary inflammation and predicting the presence of NCP. Methods The clinical and imaging data of 353 patients were analyzed. The region of interest (ROI) of PCAT was manually outlined on non-contrast CT scan images, like coronary CT calcium score sequential images, then the radiomics and deep learning features in ROIs were extracted respectively. In training set (Center 1), after performing feature selection, radiomics and deep learning feature models were established, meanwhile, clinical models were built. Finally, combined models were developed out via integrating clinical, radiomics, and deep learning features. The predictive performance of the four feature model groups (clinical, radiomics, deep learning, and three combination) was assessed by seven different machine learning models through generation of receiver operating characteristic curves (ROC) and the calculation of area under the curve (AUC), sensitivity, specificity, and accuracy. Furthermore, the predictive performance of each model was validated in an external validation set (Center 2). Results For the single model comparation, eXtreme Gradient Boosting (XGBoost) showed the best performance among the clinical model group in the validation set. And Random Forest (RF) exhibited the best indicative performance not only among the radiomics feature group but also in the deep learning feature model group. What's more, among the combined model group, RF still displayed the best predictive performance, with the value of AUC, sensitivity, specificity, and accuracy in the validation set are 0.963, 0.857, 0.929, and 0.905. Conclusion The RF model in the combined model group based on non-contrast CT scan PCAT can predict the presence of NCP more accurately and has the potential for preliminary screening of the NCP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hotongue发布了新的文献求助10
刚刚
hotongue完成签到,获得积分10
5秒前
28秒前
霍霍完成签到 ,获得积分10
45秒前
SciGPT应助zzz采纳,获得10
53秒前
Jasper应助机灵的幼菱采纳,获得10
1分钟前
1分钟前
zzz发布了新的文献求助10
1分钟前
1分钟前
1分钟前
香蕉觅云应助zzz采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
连安阳完成签到,获得积分10
1分钟前
科目三应助huo采纳,获得10
1分钟前
1分钟前
zzz发布了新的文献求助10
1分钟前
JJ完成签到 ,获得积分10
2分钟前
2分钟前
huo发布了新的文献求助10
2分钟前
威武绝山完成签到,获得积分10
3分钟前
科研通AI5应助威武绝山采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
威武绝山发布了新的文献求助10
3分钟前
4分钟前
kzkz发布了新的文献求助10
4分钟前
你知道qee吗完成签到,获得积分10
5分钟前
5分钟前
5分钟前
kzkz完成签到,获得积分10
5分钟前
一直会飞的猪完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
李健应助科研通管家采纳,获得10
5分钟前
zsmj23完成签到 ,获得积分0
6分钟前
Vesper完成签到 ,获得积分10
6分钟前
李佳倩完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
从容芮应助李剑鸿采纳,获得70
8分钟前
高分求助中
中华人民共和国出版史料 4 1000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845540
求助须知:如何正确求助?哪些是违规求助? 3387795
关于积分的说明 10550597
捐赠科研通 3108436
什么是DOI,文献DOI怎么找? 1712776
邀请新用户注册赠送积分活动 824501
科研通“疑难数据库(出版商)”最低求助积分说明 774877