Performance of Clinical Risk Prediction Models for Post-ERCP Pancreatitis: A Systematic Review

医学 接收机工作特性 逻辑回归 预测建模 梅德林 奇纳 风险评估 荟萃分析 胰腺炎 机器学习 可用性 重症监护医学 统计 内科学 计算机科学 心理干预 数学 人机交互 法学 精神科 计算机安全 政治学
作者
Nasruddin Sabrie,Gurjot Minhas,Marcus Vaska,Zhao Wu Meng,Darren R. Brenner,Nauzer Forbes
出处
期刊:Pancreas [Ovid Technologies (Wolters Kluwer)]
被引量:1
标识
DOI:10.1097/mpa.0000000000002476
摘要

Objectives: Pancreatitis is common following endoscopic retrograde cholangiopancreatography (ERCP). Despite increased vigilance of post-ERCP pancreatitis (PEP), both its incidence and associated mortality are rising. Risk prediction models may provide more accurate stratification of patient risk and proactive mitigation of PEP incidence and/or severe associated outcomes. Methods: We conducted an electronic search of MEDLINE, PubMEd, Cochrane, and CINAHL from inception through April 9, 2024 for studies evaluating the details and performances of available PEP prediction models. Studies were eligible if they used statistical measures to quantify their model’s predictive ability. Risk of bias was determined using the PROBAST tool. Results: Nineteen studies met eligibility criteria and were included. Logistic regression models were used in 15 studies, with machine learning models representing the second most commonly employed approach. Ten studies reported the performance of their risk prediction models using derivation data, with areas under the receiver operating curve (AUC) ranging from 0.68 to 0.86. Fifteen studies reported the performance of their risk prediction models on internally validated data, with AUCs ranging from 0.66 to 0.97. Eight studies reported on the performance of their risk prediction models on external validation data, with AUCs ranging from 0.67 to 0.98. Discussion: Numerous PEP clinical prediction models exist with variable performances. The use of PEP prediction tools can support the management of patients following ERCP. Implementation studies assessing the optimal usability of these tools, followed by prospective evaluations, are needed to evaluate their potential impacts on reducing PEP in real-world practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助初之采纳,获得10
刚刚
果子发布了新的文献求助10
1秒前
1秒前
高天雨发布了新的文献求助10
3秒前
shinn发布了新的文献求助10
3秒前
搜集达人应助······采纳,获得10
3秒前
目分发布了新的文献求助30
4秒前
mammoth完成签到,获得积分10
4秒前
星辰大海应助PG采纳,获得10
5秒前
6秒前
zyf发布了新的文献求助10
7秒前
完美世界应助小丸子采纳,获得10
8秒前
咸不辣苏完成签到 ,获得积分10
8秒前
Orange应助落寞白曼采纳,获得10
8秒前
zzx完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
语安发布了新的文献求助10
10秒前
多喝水发布了新的文献求助10
11秒前
桐桐应助暴躁的山灵采纳,获得10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
13秒前
liming发布了新的文献求助10
13秒前
SJD完成签到,获得积分0
14秒前
14秒前
16秒前
未雨绸缪发布了新的文献求助10
16秒前
汉堡包应助素隐采纳,获得10
16秒前
韩小花发布了新的文献求助10
16秒前
慕青应助小吃货采纳,获得10
17秒前
目分完成签到,获得积分10
18秒前
KKLUV发布了新的文献求助10
18秒前
Maestro_S应助一期一会采纳,获得10
18秒前
科研通AI6.1应助11采纳,获得10
18秒前
18秒前
张靖发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300