亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence in Computer-Aided Drug Design (CADD) Tools for the Finding of Potent Biologically Active Small Molecules: Traditional toModern Approach

计算机辅助 计算机科学 数量结构-活动关系 计算机辅助设计 生化工程 机器学习 工程类 程序设计语言 操作系统
作者
Benjamin Siddiqui,Chandra Shekhar Yadav,Mohd Akil,Mohd Faiyyaz,Abdul Rahman Khan,Naseem Ahmad,Firoj Hassan,Mohd. Irfan Azad,Mohammad Owais,Malik Nasibullah,Iqbal Azad
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:28 被引量:16
标识
DOI:10.2174/0113862073334062241015043343
摘要

Abstract: Computer-Aided Drug Design (CADD) entails designing molecules that could potentially interact with a specific biomolecular target and promising their potential binding. The stereo- arrangement and stereo-selectivity of small molecules (SMs)--based chemotherapeutic agents significantly influence their therapeutic potential and enhance their therapeutic advantages. CADD has been a well-established field for decades, but recent years have observed a significant shift toward acceptance of computational approaches in both academia and the pharmaceutical industry. Recently, artificial intelligence (AI), bioinformatics, and data science have played a significant role in drug discovery to accelerate the development of effective treatments, reduce expenses, and eliminate the need for animal testing. This shift can be attributed to the availability of extensive data on molecular properties, binding to therapeutic targets, and their 3D structures. Increasing interest from legislators, pharmaceutical companies, and academic and industrial scientists is evidence that AI is reshaping the drug discovery industry. To achieve success in drug discovery, it is necessary to optimize pharmacodynamic, pharmacokinetic, and clinical outcome-related properties. Moreover, the advent of on-demand virtual libraries containing billions of drug-like SMs, coupled with abundant computing capacities, has further facilitated this transition. To fully capitalize on these resources, rapid computational methods are needed for effective ligand screening. This includes structure-based virtual screening (SBVS) of vast chemical spaces, aided by fast iterative screening approaches. At the same time, advances in deep learning (DL) predictions of ligand properties and target activities have become very helpful, as they no longer need information about the structure of the receptor. This study examines recent progress in the drug discovery and development (DDD) approach, their potential to reshape the entire DDD process, and the challenges they face. This review examines the role of artificial intelligence as a fundamental component in drug discovery, particularly focusing on small molecules. It also discusses how AI-driven approaches can expedite the identification of diverse, potent, target-specific, and drug-like ligands for protein targets. This advancement has the potential to make drug discovery more efficient and cost-effective, ultimately facilitating the development of safer and more effective therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
21秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
41秒前
量子星尘发布了新的文献求助10
44秒前
张璟博发布了新的文献求助30
45秒前
binwu完成签到 ,获得积分10
47秒前
斯文败类应助Epiphany采纳,获得10
1分钟前
向东是大海完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助macleod采纳,获得10
1分钟前
NattyPoe发布了新的文献求助10
1分钟前
Owen应助向东是大海采纳,获得10
1分钟前
macleod完成签到,获得积分10
1分钟前
完美世界应助好人采纳,获得30
1分钟前
纯真的凝安完成签到,获得积分10
2分钟前
2分钟前
Epiphany发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Luna666完成签到,获得积分10
2分钟前
2分钟前
犬来八荒发布了新的文献求助10
2分钟前
qingfeng完成签到,获得积分10
2分钟前
FashionBoy应助犬来八荒采纳,获得20
2分钟前
lx完成签到,获得积分10
2分钟前
bkagyin应助张璟博采纳,获得10
3分钟前
踏实白柏完成签到 ,获得积分10
3分钟前
3分钟前
明亮的老四完成签到 ,获得积分10
3分钟前
3分钟前
好人发布了新的文献求助30
3分钟前
好人完成签到,获得积分10
4分钟前
4分钟前
可爱的函函应助Epiphany采纳,获得10
4分钟前
4分钟前
张璟博发布了新的文献求助10
4分钟前
犬来八荒发布了新的文献求助20
4分钟前
可爱的函函应助张璟博采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634933
求助须知:如何正确求助?哪些是违规求助? 4734317
关于积分的说明 14989509
捐赠科研通 4792669
什么是DOI,文献DOI怎么找? 2559771
邀请新用户注册赠送积分活动 1520077
关于科研通互助平台的介绍 1480136