钙钛矿(结构)
材料科学
能量学
重组
能量转换效率
密度泛函理论
硅烷
化学物理
图层(电子)
光电子学
纳米技术
化学工程
计算化学
热力学
化学
物理
复合材料
工程类
基因
生物化学
作者
Sheng Jiang,Shaobing Xiong,Zhongcheng Yuan,Yafang Li,Xiaomeng You,Hongbo Wu,Menghui Jia,Zhennan Lin,Zaifei Ma,Yu‐Ning Wu,Ye‐Feng Yao,Xianjie Liu,Junhao Chu,Zhenrong Sun,Mats Fahlman,Henry J. Snaith,Qinye Bao
标识
DOI:10.1002/adma.202503110
摘要
Reducing heterointerface nonradiative recombination is a key challenge for realizing highly efficient perovskite solar cells (PSCs). Motivated by this, a facile strategy is developed via interfacial energetics reversal to functionalize perovskite heterointerface. A surfactant molecule, trichloro[3-(pentafluorophenyl)propyl]silane (TPFS) reverses perovskite surface energetics from intrinsic n-type to p-type, evidently demonstrated by ultraviolet and inverse photoelectron spectroscopies. The reconstructed perovskite surface energetics match well with the upper deposited hole transport layer, realizing an exquisite energy level alignment for accelerating hole extraction across the heterointerface. Meanwhile, TPFS further diminishes surface defect density. As a result, this cooperative strategy leads to greatly minimized nonradiative recombination. PSCs achieve an impressive power conversion efficiency of 25.9% with excellent reproducibility, and a nonradiative recombination-induced qVoc loss of only 57 meV, which is the smallest reported to date in n-i-p structured PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI