Automated Enforcement and Traffic Safety

业务 执行 计算机科学 运输工程 计算机安全 工程类 政治学 法学
作者
Zhi Cheng,Zhaodi Dong,Min‐Seok Pang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.00575
摘要

Traffic safety poses a persistent challenge for society and public policy. Conventional law enforcement by human police is often cost-ineffective because of information asymmetry and negative externalities of unsafe driving behaviors. Automated enforcement, in the form of traffic cameras on the road, has gained prominence in recent decades, yet its effectiveness and underlying mechanisms remain debated. This study examines the impact of traffic cameras on road safety using longitudinal data from a metropolitan city in China. We distinguish between advanced cameras, which use machine learning to detect various traffic violations and constantly record video, and conventional cameras, which rely on triggered image capture for a limited number of violations. Using an event study design with staggered camera installations at road intersections, we observe a significant and sustained reduction in accidents near advanced cameras, compared with locations with no cameras or only conventional cameras. Further analysis identifies three key mechanisms driving the effects of advanced cameras: (i) automated detection effect—superior technical capabilities to automate violation detection; (ii) real-time recording effect—continuous monitoring and recording capability to augment accident cause identification; and (iii) driver learning effect—technology-enabled deterrence that increases driver awareness of these cameras and encourages behavioral adjustments to mitigate accident risks. This study contributes to information systems, transportation economics, and criminology, offering policy insights into the effective design and deployment of automated enforcement to improve traffic safety. This paper was accepted by D. J. Wu, information systems. Funding: Z. Cheng acknowledges the support of the Staff Research Fund at the London School of Economics and Political Science. Z. Dong acknowledges financial support from the National Natural Science Foundation of China (NSFC) Young Scientists Fund [Grant 72202247] and the Guangdong Basic and Applied Basic Research Foundation [Grant 2024A1515012806]. Supplemental Material: The online appendices and data files are available at https://doi.org/10.1287/mnsc.2023.00575 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿瑶完成签到 ,获得积分10
刚刚
科研通AI6应助鲤鱼书白采纳,获得10
1秒前
2秒前
诚c发布了新的文献求助10
2秒前
杨羕发布了新的文献求助10
2秒前
3秒前
大美小快发布了新的文献求助10
3秒前
蚊蚊爱读书应助哎哟哎哟采纳,获得10
4秒前
种地人刘刘完成签到,获得积分10
4秒前
4秒前
5秒前
alho完成签到 ,获得积分10
5秒前
皮PP完成签到,获得积分10
5秒前
李胜发布了新的文献求助10
5秒前
简单应助一盆多肉采纳,获得20
5秒前
5秒前
6秒前
6秒前
打打应助晓晓采纳,获得10
6秒前
6秒前
GSQ发布了新的文献求助10
6秒前
7秒前
8秒前
mou发布了新的文献求助10
8秒前
8秒前
hyq发布了新的文献求助10
9秒前
威武鸡发布了新的文献求助10
9秒前
wanci应助柳青采纳,获得10
9秒前
DDD发布了新的文献求助10
9秒前
冷艳折耳根完成签到 ,获得积分10
10秒前
科研通AI6应助乐观的若翠采纳,获得10
10秒前
10秒前
10秒前
11秒前
搜集达人应助liliy采纳,获得10
11秒前
11秒前
子卿完成签到,获得积分10
11秒前
娜娜完成签到,获得积分10
11秒前
12秒前
卢西完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484905
求助须知:如何正确求助?哪些是违规求助? 4585108
关于积分的说明 14402370
捐赠科研通 4515459
什么是DOI,文献DOI怎么找? 2474300
邀请新用户注册赠送积分活动 1460113
关于科研通互助平台的介绍 1433582